import utils import os import conf import requests def download_participant_data(participant): """ Downloads the participants csv files and banner Parameters: participant (str): The url of the webring participant. Returns: Boolean: True if all files downloaded, False if any of them failed """ try: utils.print_colors(f"[+] Downloading webring {participant} csv files and banner") local_participant_dir = utils.generate_local_participant_dir(participant) os.makedirs(local_participant_dir, exist_ok=True) for file_name in conf.CSV_FILES: csv_res = requests.get(f'{utils.generate_participant_url(participant)}{file_name}', proxies=conf.PROXIES, timeout=10) with open(f'{local_participant_dir}{file_name}', "w") as file: file.write(csv_res.text) banner_res = requests.get(f'{utils.generate_participant_url(participant)}banner.png', stream=True, proxies=conf.PROXIES, timeout=10) banner_path = f'{local_participant_dir}banner.png' with open(banner_path, 'wb') as f: f.write(banner_res.content) # SANITY CHECK ON THE BANNER PNG IMAGE: if not utils.IsBannerValid(banner_path): # if false, overwrite it with the template banner png file os.remove(banner_path) shutil.copyfile(f'{conf.TEMPLATE_PATH}banner.png', banner_path) utils.print_colors(f"[+] Downloaded webring {participant} csv files and banner") except Exception: print_colors("[-] Downloading webring participant's files failed.", is_error=True) def clean_csv(df, blacklist): """ Cleans duplications and blacklisted rows Parameters: df (dataframe): The dataframe we want to clean. blacklist (list): The blacklisted words. Returns: Dataframe: Cleaned dataframe. """ try: if not df.empty: df = utils.remove_duplications(df) df = df[~df.apply(lambda row: any(word in str(value) for word in blacklist for value in row), axis=1)] if not df.empty: df = df[df.apply(utils.is_row_valid, axis=1)] except Exception: print_colors("[-] cleaning dataframe failed", is_error=True) return df def mark_sensitive(df, sensitive_list): """ Marks rows as sensitive Parameters: df (dataframe): The dataframe we want to mark. sensitive (list): The sensitive words. Returns: Dataframe: Marked dataframe. """ try: if not df.empty: sensitive_rows = df.apply(lambda row: any(word in str(value) for word in sensitive_list for value in row), axis=1) df.loc[sensitive_rows, 'Sensitive'] = 'YES' df.loc[~sensitive_rows, 'Sensitive'] = 'NO' except Exception: print_colors("[-] MArking sensitive words failed.", is_error=True) return df