mirror of
http://git.nowherejezfoltodf4jiyl6r56jnzintap5vyjlia7fkirfsnfizflqd.onion/nihilist/darknet-lantern.git
synced 2025-07-01 22:16:41 +00:00
Merge pull request 'issue-80/issue-20_option-6-refactor-and-trusted-webring' (#82) from doctor_dev/darknet-lantern:issue-80/issue-20_option-6-refactor-and-trusted-webring into main
Reviewed-on: http://git.nowherejezfoltodf4jiyl6r56jnzintap5vyjlia7fkirfsnfizflqd.onion/nihilist/darknet-lantern/pulls/82
This commit is contained in:
commit
0240c82df0
5 changed files with 663 additions and 324 deletions
|
@ -1,6 +1,7 @@
|
||||||
from utils import *
|
from utils import *
|
||||||
import logic.lantern_logic as lantern
|
import logic.lantern_logic as lantern
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
import logic.options as options
|
||||||
|
|
||||||
|
|
||||||
import os, pwd
|
import os, pwd
|
||||||
|
@ -149,6 +150,11 @@ def main():
|
||||||
webpdf = pd.read_csv(webpcsvfile, on_bad_lines='skip')
|
webpdf = pd.read_csv(webpcsvfile, on_bad_lines='skip')
|
||||||
print_colors(f"[+] file exists, your Webring URL is {instance}")
|
print_colors(f"[+] file exists, your Webring URL is {instance}")
|
||||||
|
|
||||||
|
if 'Blacklisted' not in webpdf.columns:
|
||||||
|
webpdf['Blacklisted'] = 'NO'
|
||||||
|
|
||||||
|
webpdf.to_csv(webpcsvfile)
|
||||||
|
|
||||||
##### CHECK IF ARGUMENTS ARE PASSED TO ENTER PROMPT-LESS MODE #####
|
##### CHECK IF ARGUMENTS ARE PASSED TO ENTER PROMPT-LESS MODE #####
|
||||||
if len(sys.argv) == 2 and sys.argv[1] == "4":
|
if len(sys.argv) == 2 and sys.argv[1] == "4":
|
||||||
print("4) Synchronize new links from existing webring participants into your unverified.csv file")
|
print("4) Synchronize new links from existing webring participants into your unverified.csv file")
|
||||||
|
@ -224,6 +230,8 @@ Maintenance:
|
||||||
else:
|
else:
|
||||||
sensi = 'YES'
|
sensi = 'YES'
|
||||||
|
|
||||||
|
|
||||||
|
#TODO: add blacklisting default to no when refactoring
|
||||||
newrow=[instance,category,name,url,sensi,desc,'YES','100']
|
newrow=[instance,category,name,url,sensi,desc,'YES','100']
|
||||||
print_colors(f"[+] NEWROW= {newrow}")
|
print_colors(f"[+] NEWROW= {newrow}")
|
||||||
# (rest is automatic: status, score, instance is = '' because it is your own instance)
|
# (rest is automatic: status, score, instance is = '' because it is your own instance)
|
||||||
|
@ -529,65 +537,9 @@ Maintenance:
|
||||||
# 6) Trust/UnTrust/Blacklist a webring participant
|
# 6) Trust/UnTrust/Blacklist a webring participant
|
||||||
#####################################################
|
#####################################################
|
||||||
|
|
||||||
|
|
||||||
case 4:
|
case 4:
|
||||||
print_colors("4) Synchronize new links from new or existing webring participants, into your local csv files")
|
|
||||||
|
|
||||||
try:
|
|
||||||
|
|
||||||
print_colors('[+] Syncing official webrings to local webrings')
|
|
||||||
|
|
||||||
webring_df = get_local_webring_participants()
|
options.run_option_4()
|
||||||
|
|
||||||
current_instance = get_current_instance()
|
|
||||||
|
|
||||||
for participant in webring_df.itertuples(index=False, name='columns'):
|
|
||||||
# Check if the participant is my instance
|
|
||||||
if current_instance in participant:
|
|
||||||
continue
|
|
||||||
|
|
||||||
if not is_participant_reachable(participant.URL):
|
|
||||||
print_colors("[-] Webring {participant.URL} isn't reachable, skipping", is_error=True)
|
|
||||||
continue
|
|
||||||
|
|
||||||
print_colors('[+] Downloading participant\'s files to store locally')
|
|
||||||
lantern.download_participant_data(participant.URL)
|
|
||||||
|
|
||||||
print_colors('[+] Reading local blacklist and sensitive words')
|
|
||||||
local_blacklist, local_sensitive = get_local_blacklist_and_sensitive()
|
|
||||||
|
|
||||||
print_colors('[+] Reading local verified and unverified')
|
|
||||||
local_verified_df, local_unverified_df = get_local_verified_and_unverified()
|
|
||||||
|
|
||||||
participant_url = generate_local_participant_dir(participant.URL)
|
|
||||||
|
|
||||||
print_colors('[+] Reading webrring participant\'s verified and unverified')
|
|
||||||
participant_verified_df, participant_unverified_df = get_participant_local_verified_and_unverified(participant_url)
|
|
||||||
|
|
||||||
print_colors('[+] Removing unvalidated and blacklisted rows')
|
|
||||||
participant_verified_df = lantern.clean_csv(participant_verified_df, local_blacklist)
|
|
||||||
participant_unverified_df = lantern.clean_csv(participant_unverified_df, local_blacklist)
|
|
||||||
|
|
||||||
print_colors('[+] Marking sensitive rows')
|
|
||||||
participant_verified_df = lantern.mark_sensitive(participant_verified_df, local_sensitive)
|
|
||||||
participant_unverified_df = lantern.mark_sensitive(participant_unverified_df, local_sensitive)
|
|
||||||
|
|
||||||
if participant.Trusted == 'YES':
|
|
||||||
print_colors('[+] This participant is trusted, copying participant\'s verified to local verified')
|
|
||||||
local_verified_df = merge_verification_df(local_verified_df, participant_verified_df)
|
|
||||||
|
|
||||||
else:
|
|
||||||
print_colors('[+] This participant is not trusted, copying participant\'s verified to local unverified')
|
|
||||||
local_unverified_df = merge_verification_df(local_unverified_df, participant_verified_df)
|
|
||||||
|
|
||||||
print_colors('[+] Copying participant\'s unverified to local unverified')
|
|
||||||
local_unverified_df = merge_verification_df(local_unverified_df, participant_unverified_df)
|
|
||||||
|
|
||||||
print_colors('[+] Saving local verified and unverified')
|
|
||||||
save_local_verified_and_unverified(local_verified_df, local_unverified_df)
|
|
||||||
|
|
||||||
except Exception as err:
|
|
||||||
print_colors("[-] Option 4 failed suddently, please try again", is_error=True)
|
|
||||||
|
|
||||||
break
|
break
|
||||||
|
|
||||||
|
@ -731,124 +683,9 @@ Maintenance:
|
||||||
##############################################
|
##############################################
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
case 6:
|
case 6:
|
||||||
while True:
|
options.run_option_6()
|
||||||
print_colors("[+] Trust/UnTrust/Blacklist a webring participant (Potentially dangerous)")
|
|
||||||
webringcsvfile=instancepath+'/'+'webring-participants.csv'
|
|
||||||
wdf = pd.read_csv(webringcsvfile, on_bad_lines='skip')
|
|
||||||
print_colors(f'{wdf[["URL","Trusted"]]}')
|
|
||||||
try:
|
|
||||||
index = int(input("What is the index of the webring participant that you want to edit? -1 to exit ").strip())
|
|
||||||
if index == -1:
|
|
||||||
break
|
|
||||||
elif index in wdf.index:
|
|
||||||
choice = int(input("Do you want to 1) Trust, 2) UnTrust, or 3) Blacklist the webring participant?").strip())
|
|
||||||
while True:
|
|
||||||
match choice:
|
|
||||||
case 1:
|
|
||||||
# trust the webring participant
|
|
||||||
choice2=input("You're about to trust another peer, this means that you're going to automatically trust all of the links they have in their verified.csv file! If this is a malicious peer, this action might be potentially risky! Do you want to continue ? (y/n)")
|
|
||||||
if choice2 == "y":
|
|
||||||
print_colors(f'[+] Trusting webring participant {wdf.at[index,"URL"]}')
|
|
||||||
## Warning: In future versions of panda '✔️' will not work. It will show an error.
|
|
||||||
wdf.at[index,"Trusted"]= 'YES'
|
|
||||||
wdf.to_csv(webringcsvfile, index=False)
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
print_colors("[-] not trusting webring participant", is_error=True)
|
|
||||||
break
|
|
||||||
|
|
||||||
case 2:
|
|
||||||
print_colors(f'[+] UnTrusting webring participant {wdf.at[index,"URL"]}')
|
|
||||||
## Warning: In future versions of panda '' will not work. It will show an error. Maybe change to a 0,1
|
|
||||||
wdf.at[index,"Trusted"]='NO'
|
|
||||||
wdf.to_csv(webringcsvfile, index=False)
|
|
||||||
break
|
|
||||||
|
|
||||||
case 3:
|
|
||||||
print_colors(f'[+] Blacklisting webring participant {wdf.at[index,"URL"]}')
|
|
||||||
instance2blacklist=wdf.at[index,"URL"]
|
|
||||||
newrow=[instance2blacklist]
|
|
||||||
print_colors(f"[+] NEWROW= {newrow}")
|
|
||||||
# (rest is automatic: status, score, instance is = '' because it is your own instance)
|
|
||||||
# check if the entry doesn't already exist in verified.csv and in unverified.csv
|
|
||||||
# if it doesnt exist, add it into unverified.csv
|
|
||||||
bldf.loc[-1] = newrow # adding a row
|
|
||||||
bldf.index = bldf.index + 1 # shifting index
|
|
||||||
bldf = bldf.sort_index() # sorting by index
|
|
||||||
print_colors("[+] New row added! now writing the csv file:")
|
|
||||||
bldf.to_csv(blcsvfile, index=False)
|
|
||||||
|
|
||||||
|
|
||||||
# remove all of the entries that came from that participant (drop the lines in your own verified+unverified.csv that have that instance in the instance column)
|
|
||||||
|
|
||||||
rows2delete= [] # it is an empty list at first
|
|
||||||
for i,j in vdf.iterrows():
|
|
||||||
row=vdf.loc[i,:].values.tolist()
|
|
||||||
for k,l in bldf.iterrows():
|
|
||||||
blword=bldf.at[k, 'blacklisted-words']
|
|
||||||
if any(blword in str(x) for x in row) == True:
|
|
||||||
if i not in rows2delete:
|
|
||||||
print_colors(f"Marking row {i} for deletion, as it matches with a blacklisted word")
|
|
||||||
rows2delete.append(i) #mark the row for deletion if not already done
|
|
||||||
for i in rows2delete:
|
|
||||||
row=vdf.loc[i,:].values.tolist()
|
|
||||||
print_colors(f'[+] REMOVING ROW: {i} {row}')
|
|
||||||
vdf.drop(i, inplace= True)
|
|
||||||
vdf.to_csv(verifiedcsvfile, index=False)
|
|
||||||
print_colors(f"{vdf}")
|
|
||||||
rows2delete= [] # it is an empty list at first
|
|
||||||
rows2delete= [] # it is an empty list at first
|
|
||||||
for i,j in uvdf.iterrows():
|
|
||||||
row=uvdf.loc[i,:].values.tolist()
|
|
||||||
for k,l in bldf.iterrows():
|
|
||||||
blword=bldf.at[k, 'blacklisted-words']
|
|
||||||
if any(blword in str(x) for x in row) == True:
|
|
||||||
if i not in rows2delete:
|
|
||||||
print_colors(f"Marking row {i} for deletion, as it matches with a blacklisted word")
|
|
||||||
rows2delete.append(i) #mark the row for deletion if not already done
|
|
||||||
for i in rows2delete:
|
|
||||||
row=uvdf.loc[i,:].values.tolist()
|
|
||||||
print_colors(f'[+] REMOVING ROW: {i} {row}')
|
|
||||||
uvdf.drop(i, inplace= True)
|
|
||||||
uvdf.to_csv(unverifiedcsvfile, index=False)
|
|
||||||
print_colors(f"{uvdf}")
|
|
||||||
rows2delete= [] # it is an empty list at first
|
|
||||||
|
|
||||||
# find all rows that match with the instance name in wdf aswell to remove them
|
|
||||||
for i,j in wdf.iterrows():
|
|
||||||
row=wdf.loc[i,:].values.tolist()
|
|
||||||
for k,l in bldf.iterrows():
|
|
||||||
blword=bldf.at[k, 'blacklisted-words']
|
|
||||||
if any(blword in str(x) for x in row) == True:
|
|
||||||
if i not in rows2delete:
|
|
||||||
print_colors(f"Marking row {i} for deletion, as it matches with a blacklisted word")
|
|
||||||
rows2delete.append(i) #mark the row for deletion if not already done
|
|
||||||
for i in rows2delete:
|
|
||||||
row=wdf.loc[i,:].values.tolist()
|
|
||||||
print_colors(f'[+] REMOVING ROW: {i} {row}')
|
|
||||||
wdf.drop(i, inplace= True)
|
|
||||||
wdf.to_csv(webringcsvfile, index=False)
|
|
||||||
print_colors(f"{wdf}")
|
|
||||||
rows2delete= [] # it is an empty list at first
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# remove the entire directory in www/participants/INSTANCENAME aswell to get rid of it
|
|
||||||
instance2blacklistpath=rootpath+'www/participants/'+instance2blacklist
|
|
||||||
print_colors(f"[+] removing the participant's directory at {instance2blacklistpath}")
|
|
||||||
shutil.rmtree(instance2blacklistpath)
|
|
||||||
|
|
||||||
case _:
|
|
||||||
break
|
|
||||||
except Exception:
|
|
||||||
break
|
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
||||||
|
@ -1004,50 +841,14 @@ Maintenance:
|
||||||
|
|
||||||
|
|
||||||
case 9:
|
case 9:
|
||||||
print_colors("[+] 9) Cleaning up all duplicates in your own unverified + verified.csv (based on the url)")
|
|
||||||
|
|
||||||
try:
|
|
||||||
|
|
||||||
print_colors('[+] Reading local verified and unverified')
|
|
||||||
verified_df, unverified_df = get_local_verified_and_unverified()
|
|
||||||
|
|
||||||
print_colors('[+] Removing cross dataframe replications')
|
options.run_option_9()
|
||||||
verified_df, unverified_df = remove_cross_dataframe_replications(verified_df, unverified_df)
|
|
||||||
|
|
||||||
print_colors('[+] Saving local verified and unverified')
|
|
||||||
save_local_verified_and_unverified(verified_df, unverified_df)
|
|
||||||
|
|
||||||
except Exception as err:
|
|
||||||
print_colors("[-] Option 9 failed suddently, please try again", is_error=True)
|
|
||||||
|
|
||||||
break
|
break
|
||||||
|
|
||||||
case 10:
|
case 10:
|
||||||
print_colors("[+] 10) perform sanity checks on all csv files (to mark them as sensitive / or remove the ones that are blacklisted)")
|
|
||||||
|
|
||||||
try:
|
|
||||||
print_colors('[+] Reading local blacklist and sensitive words')
|
|
||||||
local_blacklist, local_sensitive = get_local_blacklist_and_sensitive()
|
|
||||||
|
|
||||||
for participant in os.listdir(conf.PARTICIPANT_DIR):
|
|
||||||
participant_local_dir = conf.PARTICIPANT_DIR + participant + '/'
|
|
||||||
|
|
||||||
print_colors('[+] Reading webrring participant\'s verified and unverified')
|
|
||||||
participant_verified_df, participant_unverified_df = get_participant_local_verified_and_unverified(participant_local_dir)
|
|
||||||
|
|
||||||
print_colors('[+] Removing unverified and blacklisted rows')
|
|
||||||
participant_verified_df = lantern.clean_csv(participant_verified_df, local_blacklist)
|
|
||||||
participant_unverified_df = lantern.clean_csv(participant_unverified_df, local_blacklist)
|
|
||||||
|
|
||||||
print_colors('[+] Marking sensitive rows')
|
|
||||||
participant_verified_df = lantern.mark_sensitive(participant_verified_df, local_sensitive)
|
|
||||||
participant_unverified_df = lantern.mark_sensitive(participant_unverified_df, local_sensitive)
|
|
||||||
|
|
||||||
print_colors('[+] Saving local participant verified and unverified')
|
|
||||||
save_local_participant_verified_and_unverified(participant_verified_df, participant_unverified_df, participant_local_dir)
|
|
||||||
|
|
||||||
except Exception as err:
|
options.run_option_10()
|
||||||
print_colors("[-] Option 10 failed suddently, please try again", is_error=True)
|
|
||||||
|
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
|
@ -7,11 +7,15 @@ def download_participant_data(participant):
|
||||||
"""
|
"""
|
||||||
Downloads the participants csv files and banner
|
Downloads the participants csv files and banner
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
participant (str): The url of the webring participant.
|
----------
|
||||||
|
participant : str
|
||||||
|
The url of the webring participant.
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Boolean: True if all files downloaded, False if any of them failed
|
-------
|
||||||
|
Boolean
|
||||||
|
True if all files downloaded, False if any of them failed
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -44,28 +48,34 @@ def download_participant_data(participant):
|
||||||
utils.print_colors(f"[+] Downloaded webring {participant} csv files and banner")
|
utils.print_colors(f"[+] Downloaded webring {participant} csv files and banner")
|
||||||
|
|
||||||
except Exception as err:
|
except Exception as err:
|
||||||
print_colors("[-] Downloading webring participant's files failed.", is_error=True)
|
utils.print_colors("[-] Downloading webring participant's files failed.", is_error=True)
|
||||||
|
|
||||||
def clean_csv(df, blacklist):
|
def clean_csv(df, blacklist):
|
||||||
"""
|
"""
|
||||||
Cleans duplications and blacklisted rows
|
Cleans duplications and blacklisted rows
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
df (dataframe): The dataframe we want to clean.
|
----------
|
||||||
blacklist (list): The blacklisted words.
|
df pd.DataFrame
|
||||||
|
The dataframe we want to clean.
|
||||||
|
blacklist : list
|
||||||
|
The blacklisted words.
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Dataframe: Cleaned dataframe.
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
Cleaned dataframe.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if not df.empty:
|
if not df.empty:
|
||||||
df = utils.remove_duplications(df)
|
df = utils.remove_duplications(df)
|
||||||
|
|
||||||
df = df[~df.apply(lambda row: any(word in str(value) for word in blacklist for value in row), axis=1)]
|
df = df[~df.apply(lambda row: any(word in str(value) for word in blacklist for value in row), axis=1)]
|
||||||
|
|
||||||
if not df.empty:
|
if not df.empty:
|
||||||
df = df[df.apply(utils.is_row_valid, axis=1)]
|
df = df[df.apply(utils.is_row_valid, axis=1)]
|
||||||
|
|
||||||
except Exception as err:
|
except Exception as err:
|
||||||
print_colors("[-] cleaning dataframe failed", is_error=True)
|
print_colors("[-] cleaning dataframe failed", is_error=True)
|
||||||
|
|
||||||
|
@ -75,12 +85,17 @@ def mark_sensitive(df, sensitive_list):
|
||||||
"""
|
"""
|
||||||
Marks rows as sensitive
|
Marks rows as sensitive
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
df (dataframe): The dataframe we want to mark.
|
----------
|
||||||
sensitive (list): The sensitive words.
|
df : pd.DataFrame
|
||||||
|
The dataframe we want to mark.
|
||||||
|
sensitive : list
|
||||||
|
The sensitive words.
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Dataframe: Marked dataframe.
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
Marked dataframe.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -91,6 +106,72 @@ def mark_sensitive(df, sensitive_list):
|
||||||
df.loc[~sensitive_rows, 'Sensitive'] = 'NO'
|
df.loc[~sensitive_rows, 'Sensitive'] = 'NO'
|
||||||
|
|
||||||
except Exception as err:
|
except Exception as err:
|
||||||
print_colors("[-] MArking sensitive words failed.", is_error=True)
|
print_colors("[-] Marking sensitive words failed.", is_error=True)
|
||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
def mark_webring_participant_trusted(webring_df, participant_id, trustworthy):
|
||||||
|
"""
|
||||||
|
Marks a webring to be trusted or not
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
webring_df : pd.DataFrame
|
||||||
|
dataframe of all the webring participants
|
||||||
|
participant_id : int
|
||||||
|
the index of the participant
|
||||||
|
trustworthy : bool
|
||||||
|
is the participant trustworthy or not
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
Marked webring dataframe with trust/untrust.
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
|
||||||
|
webring_df.iloc[participant_id, webring_df.columns.get_loc('Trusted')] = "YES" if trustworthy else "NO"
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors("[-] Trusting or untrusting a webring participant failed", is_error = True)
|
||||||
|
|
||||||
|
return webring_df
|
||||||
|
|
||||||
|
def mark_webring_participant_blacklist(webring_df, participant_instance, participant_id, blacklisted):
|
||||||
|
"""
|
||||||
|
Marks a webring to be blacklisted or not
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
webring_df : pd.DataFrame
|
||||||
|
dataframe of all the webring participants
|
||||||
|
participant_id :int
|
||||||
|
the index of the participant
|
||||||
|
blacklisted : bool
|
||||||
|
is the participant set to be blacklisted or not
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
Marked webring dataframe with blacklist/unblacklist.
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
if blacklisted:
|
||||||
|
webring_df.iloc[participant_id, webring_df.columns.get_loc('Blacklisted')] = "YES"
|
||||||
|
|
||||||
|
utils.print_colors(f'[+] Adding new word to blacklist')
|
||||||
|
local_blacklist_df = utils.add_word_to_blacklist(participant_instance)
|
||||||
|
|
||||||
|
else:
|
||||||
|
webring_df.iloc[participant_id, webring_df.columns.get_loc('Blacklisted')] = "NO"
|
||||||
|
|
||||||
|
utils.print_colors(f'[+] Removing word from blacklist')
|
||||||
|
local_blacklist_df = utils.remove_word_from_blacklist(participant_instance)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors("[-] Blacklisting or unblacklisting a webring participlant failed", is_error = True)
|
||||||
|
raise err
|
||||||
|
|
||||||
|
return webring_df
|
234
scripts/logic/options.py
Normal file
234
scripts/logic/options.py
Normal file
|
@ -0,0 +1,234 @@
|
||||||
|
import shutil
|
||||||
|
import os
|
||||||
|
|
||||||
|
import utils
|
||||||
|
import conf
|
||||||
|
import logic.lantern_logic as lantern
|
||||||
|
|
||||||
|
def run_option_4():
|
||||||
|
"""
|
||||||
|
Running option 4: syncing all links from official and registered webrings
|
||||||
|
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
|
||||||
|
utils.print_colors("4) Synchronize new links from new or existing webring participants, into your local csv files")
|
||||||
|
|
||||||
|
utils.print_colors('[+] Syncing official webrings to local webrings')
|
||||||
|
|
||||||
|
webring_df = utils.get_local_webring_participants()
|
||||||
|
|
||||||
|
current_instance = utils.get_current_instance()
|
||||||
|
|
||||||
|
utils.print_colors('[+] Reading local blacklist and sensitive words')
|
||||||
|
local_blacklist_df = utils.get_local_blacklist()
|
||||||
|
local_sensitive_df = utils.get_local_sensitive()
|
||||||
|
|
||||||
|
utils.print_colors('[+] Reading local verified and unverified')
|
||||||
|
local_verified_df, local_unverified_df = utils.get_local_verified_and_unverified()
|
||||||
|
|
||||||
|
#Remove all rows
|
||||||
|
local_unverified_df = local_unverified_df[0:0]
|
||||||
|
local_verified_df = local_verified_df[0:0]
|
||||||
|
|
||||||
|
for participant in webring_df.itertuples(index=False, name='columns'):
|
||||||
|
# Check if the participant is my instance
|
||||||
|
if current_instance in participant:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if participant.Blacklisted == 'YES':
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not utils.is_participant_reachable(participant.URL):
|
||||||
|
utils.print_colors(f"[-] Webring {participant.URL} isn't reachable, skipping", is_error=True)
|
||||||
|
continue
|
||||||
|
|
||||||
|
utils.print_colors('[+] Downloading participant\'s files to store locally')
|
||||||
|
lantern.download_participant_data(participant.URL)
|
||||||
|
|
||||||
|
participant_url = utils.generate_local_participant_dir(participant.URL)
|
||||||
|
|
||||||
|
utils.print_colors('[+] Reading webring participant\'s verified and unverified')
|
||||||
|
participant_verified_df, participant_unverified_df = utils.get_participant_local_verified_and_unverified(participant_url)
|
||||||
|
|
||||||
|
utils.print_colors('[+] Removing unvalidated and blacklisted rows')
|
||||||
|
participant_verified_df = lantern.clean_csv(participant_verified_df, local_blacklist_df['blacklisted-words'].tolist())
|
||||||
|
participant_unverified_df = lantern.clean_csv(participant_unverified_df, local_blacklist_df['blacklisted-words'].tolist())
|
||||||
|
|
||||||
|
utils.print_colors('[+] Marking sensitive rows')
|
||||||
|
participant_verified_df = lantern.mark_sensitive(participant_verified_df, local_sensitive_df['sensitive-words'].tolist())
|
||||||
|
participant_unverified_df = lantern.mark_sensitive(participant_unverified_df, local_sensitive_df['sensitive-words'].tolist())
|
||||||
|
|
||||||
|
if participant.Trusted == 'YES':
|
||||||
|
utils.print_colors('[+] This participant is trusted, copying participant\'s verified to local verified')
|
||||||
|
local_verified_df = utils.merge_verification_df(local_verified_df, participant_verified_df)
|
||||||
|
|
||||||
|
else:
|
||||||
|
utils.print_colors('[+] This participant is not trusted, copying participant\'s verified to local unverified')
|
||||||
|
local_unverified_df = utils.merge_verification_df(local_unverified_df, participant_verified_df)
|
||||||
|
|
||||||
|
utils.print_colors('[+] Copying participant\'s unverified to local unverified')
|
||||||
|
local_unverified_df = utils.merge_verification_df(local_unverified_df, participant_unverified_df)
|
||||||
|
|
||||||
|
utils.print_colors('[+] Saving local verified and unverified')
|
||||||
|
utils.save_local_verified_and_unverified(local_verified_df, local_unverified_df)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors("[-] Option 4 failed suddenly, please try again", is_error=True)
|
||||||
|
|
||||||
|
def run_option_6():
|
||||||
|
"""
|
||||||
|
Running option 6: Trusting/Untrusting/Blacklisting a webring participant
|
||||||
|
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
utils.print_colors("[+] Trust/UnTrust/Blacklist a webring participant (Potentially dangerous)")
|
||||||
|
|
||||||
|
webring_df = utils.get_local_webring_participants()
|
||||||
|
|
||||||
|
webring_path = conf.LOCAL_DIR + conf.WEBRING_CSV_FILE
|
||||||
|
|
||||||
|
utils.print_colors(f'{webring_df[["URL","Trusted", "Blacklisted"]]}')
|
||||||
|
|
||||||
|
try:
|
||||||
|
index = int(input('What is the index of the webring participant that you want to edit? -1 to exit ').strip())
|
||||||
|
|
||||||
|
if index == -1:
|
||||||
|
break
|
||||||
|
|
||||||
|
if index in webring_df.index:
|
||||||
|
choice = input('Do you want to 1) Trust, 2) UnTrust, or 3) Blacklist the webring participant?').strip()
|
||||||
|
|
||||||
|
utils.print_colors('[+] Reading local verified and unverified')
|
||||||
|
local_verified_df, local_unverified_df = utils.get_local_verified_and_unverified()
|
||||||
|
|
||||||
|
participant_instance = webring_df.iloc[index, webring_df.columns.get_loc("URL")]
|
||||||
|
|
||||||
|
|
||||||
|
match choice:
|
||||||
|
case '1':
|
||||||
|
|
||||||
|
# trust the webring participant
|
||||||
|
approve=input('You\'re about to trust another peer, this means that you\'re going to automatically trust all of the links they have in their verified.csv file! If this is a malicious peer, this action might be potentially risky! Do you want to continue ? (y/n)')
|
||||||
|
|
||||||
|
# to lower case incase someone enters Y instead of y
|
||||||
|
if approve.lower() == 'y':
|
||||||
|
try:
|
||||||
|
utils.print_colors(f'[+] Trusting webring participant {participant_instance}')
|
||||||
|
|
||||||
|
webring_df = lantern.mark_webring_participant_trusted(webring_df, index, True)
|
||||||
|
|
||||||
|
webring_df = lantern.mark_webring_participant_blacklist(webring_df, participant_instance, index, False)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors('[-] Trusting webring participant failed', is_error=True)
|
||||||
|
|
||||||
|
else:
|
||||||
|
utils.print_colors('[-] not trusting webring participant', is_error=True)
|
||||||
|
|
||||||
|
case '2':
|
||||||
|
|
||||||
|
try:
|
||||||
|
utils.print_colors(f'[+] Untrusting webring participant {participant_instance}')
|
||||||
|
|
||||||
|
webring_df = lantern.mark_webring_participant_trusted(webring_df, index, False)
|
||||||
|
|
||||||
|
webring_df = lantern.mark_webring_participant_blacklist(webring_df, participant_instance, index, False)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors('[-] Untrusting webring participant failed', is_error=True)
|
||||||
|
|
||||||
|
case '3':
|
||||||
|
|
||||||
|
try:
|
||||||
|
|
||||||
|
utils.print_colors(f'[+] Blacklisting webring participant {participant_instance}')
|
||||||
|
|
||||||
|
webring_df = lantern.mark_webring_participant_trusted(webring_df, index, False)
|
||||||
|
|
||||||
|
webring_df = lantern.mark_webring_participant_blacklist(webring_df, participant_instance, index, True)
|
||||||
|
|
||||||
|
local_blacklist_df = utils.get_local_blacklist()
|
||||||
|
|
||||||
|
utils.print_colors('[+] Removing unvalidated and blacklisted rows')
|
||||||
|
local_verified_df = lantern.clean_csv(local_verified_df, local_blacklist_df['blacklisted-words'].tolist())
|
||||||
|
local_unverified_df = lantern.clean_csv(local_verified_df, local_blacklist_df['blacklisted-words'].tolist())
|
||||||
|
|
||||||
|
participant_dir = f'{conf.PARTICIPANT_DIR}{participant_instance}'
|
||||||
|
|
||||||
|
utils.print_colors(f"[+] removing the participant's directory at {participant_dir}")
|
||||||
|
shutil.rmtree(participant_dir)
|
||||||
|
|
||||||
|
except FileNotFoundError as err:
|
||||||
|
utils.print_colors('[-] File already blacklisted', is_error=True)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors('[-] Blacklisting webring participant failed', is_error=True)
|
||||||
|
|
||||||
|
|
||||||
|
utils.save_dataframe(webring_df, webring_path)
|
||||||
|
|
||||||
|
utils.print_colors('[+] Saving local verified and unverified')
|
||||||
|
utils.save_local_verified_and_unverified(local_verified_df, local_unverified_df)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors("[-] Option 6 failed suddently, please try again", is_error=True)
|
||||||
|
|
||||||
|
def run_option_9():
|
||||||
|
"""
|
||||||
|
Running option 9: cleans duplications in local instance verified and unverified csv files
|
||||||
|
|
||||||
|
"""
|
||||||
|
utils.print_colors("[+] 9) Cleaning up all duplicates in your own unverified + verified.csv (based on the url)")
|
||||||
|
|
||||||
|
try:
|
||||||
|
|
||||||
|
utils.print_colors('[+] Reading local verified and unverified')
|
||||||
|
verified_df, unverified_df = utils.get_local_verified_and_unverified()
|
||||||
|
|
||||||
|
utils.print_colors('[+] Removing cross dataframe replications')
|
||||||
|
verified_df, unverified_df = utils.remove_cross_dataframe_replications(verified_df, unverified_df)
|
||||||
|
|
||||||
|
utils.print_colors('[+] Saving local verified and unverified')
|
||||||
|
utils.save_local_verified_and_unverified(verified_df, unverified_df)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors("[-] Option 9 failed suddenly, please try again", is_error=True)
|
||||||
|
|
||||||
|
def run_option_10():
|
||||||
|
"""
|
||||||
|
Running option 10: go over all verified and unverified participants csv files
|
||||||
|
|
||||||
|
"""
|
||||||
|
utils.print_colors("[+] 10) perform sanity checks on all csv files (to mark them as sensitive / or remove the ones that are blacklisted)")
|
||||||
|
|
||||||
|
try:
|
||||||
|
utils.print_colors('[+] Reading local blacklist and sensitive words')
|
||||||
|
local_blacklist_df = utils.get_local_blacklist()
|
||||||
|
local_sensitive_df = utils.get_local_sensitive()
|
||||||
|
|
||||||
|
for participant in os.listdir(conf.PARTICIPANT_DIR):
|
||||||
|
participant_local_dir = conf.PARTICIPANT_DIR + participant + '/'
|
||||||
|
|
||||||
|
if not os.path.exists(f'{participant_local_dir}verified.csv'):
|
||||||
|
continue
|
||||||
|
|
||||||
|
utils.print_colors('[+] Reading webrring participant\'s verified and unverified')
|
||||||
|
participant_verified_df, participant_unverified_df = utils.get_participant_local_verified_and_unverified(participant_local_dir)
|
||||||
|
|
||||||
|
utils.print_colors('[+] Removing unverified and blacklisted rows')
|
||||||
|
participant_verified_df = lantern.clean_csv(participant_verified_df, local_blacklist_df['blacklisted-words'].tolist())
|
||||||
|
participant_unverified_df = lantern.clean_csv(participant_unverified_df, local_blacklist_df['blacklisted-words'].tolist())
|
||||||
|
|
||||||
|
utils.print_colors('[+] Marking sensitive rows')
|
||||||
|
participant_verified_df = lantern.mark_sensitive(participant_verified_df, local_sensitive_df['sensitive-words'].tolist())
|
||||||
|
participant_unverified_df = lantern.mark_sensitive(participant_unverified_df, local_sensitive_df['sensitive-words'].tolist())
|
||||||
|
|
||||||
|
utils.print_colors('[+] Saving local participant verified and unverified')
|
||||||
|
utils.save_local_participant_verified_and_unverified(participant_verified_df, participant_unverified_df, participant_local_dir)
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
utils.print_colors("[-] Option 10 failed suddenly, please try again", is_error=True)
|
||||||
|
|
||||||
|
|
||||||
|
|
409
scripts/utils.py
409
scripts/utils.py
|
@ -19,7 +19,7 @@ RESET = '\033[m'
|
||||||
|
|
||||||
def get_current_instance():
|
def get_current_instance():
|
||||||
"""
|
"""
|
||||||
Checks if all URL files are actually reachable via Tor
|
Get the current host instance
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
str: the local instance onion url
|
str: the local instance onion url
|
||||||
|
@ -28,8 +28,12 @@ def get_current_instance():
|
||||||
#expanduser gives the current user directory
|
#expanduser gives the current user directory
|
||||||
instance_file = os.path.expanduser("~") + '/.darknet_participant_url'
|
instance_file = os.path.expanduser("~") + '/.darknet_participant_url'
|
||||||
|
|
||||||
with open(instance_file) as f:
|
if os.path.exists(instance_file):
|
||||||
return f.read().rstrip()
|
with open(instance_file) as f:
|
||||||
|
return f.read().rstrip()
|
||||||
|
|
||||||
|
else:
|
||||||
|
return ""
|
||||||
|
|
||||||
#Set the local dir on script run
|
#Set the local dir on script run
|
||||||
conf.LOCAL_DIR = conf.PARTICIPANT_DIR + get_current_instance() + '/'
|
conf.LOCAL_DIR = conf.PARTICIPANT_DIR + get_current_instance() + '/'
|
||||||
|
@ -137,11 +141,15 @@ def is_participant_reachable(instance):
|
||||||
"""
|
"""
|
||||||
Checks if all URL files are actually reachable via Tor
|
Checks if all URL files are actually reachable via Tor
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
instance (str): The participant onion address
|
----------
|
||||||
|
instance : str
|
||||||
|
The participant onion address
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Boolean: False if any file is unreachable, True if all are reachable
|
-------
|
||||||
|
Bool
|
||||||
|
False if any file is unreachable, True if all are reachable
|
||||||
"""
|
"""
|
||||||
|
|
||||||
url = generate_participant_url(instance)
|
url = generate_participant_url(instance)
|
||||||
|
@ -268,13 +276,17 @@ def send_server_checks(url: str) -> tuple[str, str, str]:
|
||||||
|
|
||||||
def is_row_valid(row):
|
def is_row_valid(row):
|
||||||
"""
|
"""
|
||||||
validates dataframe row to check if all field are valid
|
Validates dataframe row to check if all field are valid
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
row (dict): dataframe row
|
----------
|
||||||
|
row : dict
|
||||||
|
Dataframe row
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Boolean: True if row is valid, False if row isn't valid
|
-------
|
||||||
|
Bool
|
||||||
|
True if row is valid, False if row isn't valid
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
return (
|
return (
|
||||||
|
@ -295,18 +307,23 @@ def is_row_valid(row):
|
||||||
|
|
||||||
def merge_verification_df(receiving_df, merging_df):
|
def merge_verification_df(receiving_df, merging_df):
|
||||||
"""
|
"""
|
||||||
merges 2 dataframes of type verified or unverified (do not merge duplications by name or url)
|
Merges 2 dataframes of type verified or unverified (do not merge duplications by name or url)
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
receiving_df (Dataframe): dataframe we want to receive the data
|
----------
|
||||||
merging_df (Dataframe): dataframe we want to merge into the receiving dataframe
|
receiving_df : pd.DataFrame
|
||||||
|
Dataframe we want to receive the data
|
||||||
|
merging_df : pd.DataFrame
|
||||||
|
Dataframe we want to merge into the receiving dataframe
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Dataframe: the combined dataframe will be returned
|
--------
|
||||||
|
pd.DataFrame
|
||||||
|
The combined dataframe will be returned
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
filtered_df = merging_df[~((merging_df['URL'].isin(receiving_df['URL'])) | merging_df['Name'].isin(receiving_df['Name']))]
|
filtered_df = merging_df[~((merging_df['URL'].isin(receiving_df['URL'])) | merging_df['Name'].isin(receiving_df['Name']))]
|
||||||
|
|
||||||
if filtered_df.empty:
|
if filtered_df.empty:
|
||||||
return receiving_df
|
return receiving_df
|
||||||
|
|
||||||
|
@ -321,13 +338,17 @@ def merge_verification_df(receiving_df, merging_df):
|
||||||
|
|
||||||
def remove_duplications(df):
|
def remove_duplications(df):
|
||||||
"""
|
"""
|
||||||
remove url and name duplications from the dataframe
|
Remove url and name duplications from the dataframe
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
df (Dataframe): the dataframe to remove duplications from
|
----------
|
||||||
|
df : pd.DataFrame
|
||||||
|
The dataframe to remove duplications from
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Dataframe: the dataframe after all duplications were removed
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
The dataframe after all duplications were removed
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
df = df.drop_duplicates(subset='Name')
|
df = df.drop_duplicates(subset='Name')
|
||||||
|
@ -340,15 +361,21 @@ def remove_duplications(df):
|
||||||
|
|
||||||
def remove_cross_dataframe_replications(main_df, sub_df):
|
def remove_cross_dataframe_replications(main_df, sub_df):
|
||||||
"""
|
"""
|
||||||
remove replications from sub_df that exist in main_df
|
Remove replications from sub_df that exist in main_df
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
main_df (Dataframe): the dataframe to keep replications
|
----------
|
||||||
sub_df (Dataframe): the dataframe to remove replications
|
main_df : pd.DataFrame
|
||||||
|
The dataframe to keep replications
|
||||||
|
sub_df : DataFrame
|
||||||
|
The dataframe to remove replications
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Dataframe: the main_df with removed duplications
|
-------
|
||||||
Dataframe: the sub_df with removed duplications and removed replications
|
pd.DataFrame
|
||||||
|
The main_df with removed duplications
|
||||||
|
pd.DataFrame
|
||||||
|
The sub_df with removed duplications and removed replications
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
|
|
||||||
|
@ -365,24 +392,150 @@ def remove_cross_dataframe_replications(main_df, sub_df):
|
||||||
|
|
||||||
return main_df, sub_df
|
return main_df, sub_df
|
||||||
|
|
||||||
|
def add_word_to_blacklist(word):
|
||||||
|
"""
|
||||||
|
Add a new word to the blacklist
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
word : str
|
||||||
|
The new word we want to add to the blacklist
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
bool
|
||||||
|
True if word is in the blacklist or added, False if fails
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
local_blacklist_df = get_local_blacklist()
|
||||||
|
|
||||||
|
if word not in local_blacklist_df['blacklisted-words'].values:
|
||||||
|
|
||||||
|
local_blacklist_df.loc[len(local_blacklist_df)] = [word]
|
||||||
|
|
||||||
|
save_local_blacklist(local_blacklist_df)
|
||||||
|
|
||||||
|
else:
|
||||||
|
print_colors('[+] Word already exists in the blacklist')
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print_colors('[-] Adding word to the blacklist failed',is_error=True)
|
||||||
|
|
||||||
|
return local_blacklist_df
|
||||||
|
|
||||||
|
def remove_word_from_blacklist(word):
|
||||||
|
"""
|
||||||
|
Remove a word from the blacklist
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
word : str
|
||||||
|
The word we want to remove from the blacklist
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
bool
|
||||||
|
True if word is not in the blacklist or removed, False if fails
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
local_blacklist_df = get_local_blacklist()
|
||||||
|
|
||||||
|
if word in local_blacklist_df['blacklisted-words'].values:
|
||||||
|
|
||||||
|
local_blacklist_df = local_blacklist_df[local_blacklist_df['blacklisted-words'] != word]
|
||||||
|
|
||||||
|
save_local_blacklist(local_blacklist_df)
|
||||||
|
|
||||||
|
else:
|
||||||
|
print_colors('[+] Word wasn\'t found on the blacklist')
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print_colors('[-] Removing word from the blacklist failed',is_error=True)
|
||||||
|
|
||||||
|
return local_blacklist_df
|
||||||
|
|
||||||
|
|
||||||
|
def transfer_rows_by_instance(target_df, source_df, participant_instance):
|
||||||
|
"""
|
||||||
|
Transfer rows from one dataframe to another by instance condition
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
target_df pd.DataFrame
|
||||||
|
The dataframe i want to copy into
|
||||||
|
source_df pd.DataFrame
|
||||||
|
The dataframe i want to cut out of
|
||||||
|
participant_instance : str
|
||||||
|
The participant's instance onion address
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
The target_df with the new rows
|
||||||
|
pd.DataFrame
|
||||||
|
The source_df with the removed rows
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
mask = source_df['Instance'] == participant_instance
|
||||||
|
|
||||||
|
target_df = pd.concat([target_df, source_df[mask]])
|
||||||
|
|
||||||
|
source_df = source_df[~mask]
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print_colors('[-] Transferring rows by instance failed',is_error=True)
|
||||||
|
|
||||||
|
return target_df, source_df
|
||||||
|
|
||||||
|
def save_local_blacklist(blacklist_df):
|
||||||
|
"""
|
||||||
|
Saves the local blacklist
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
blacklist_df : pd.DataFrame
|
||||||
|
Dataframe of the blacklist
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
bool
|
||||||
|
True if successful, False if not
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
save_dataframe(blacklist_df, f'{conf.LOCAL_DIR}blacklist.csv')
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print_colors('[-] Saving blacklist failed',is_error=True)
|
||||||
|
return False
|
||||||
|
|
||||||
###TODO: can later remove the inputs and have a "global" local verified and unverified or a class of the local(lantern host) participant
|
###TODO: can later remove the inputs and have a "global" local verified and unverified or a class of the local(lantern host) participant
|
||||||
def save_local_verified_and_unverified(verified_df, unverified_df):
|
def save_local_verified_and_unverified(verified_df, unverified_df):
|
||||||
"""
|
"""
|
||||||
saves the local verified and unverified
|
Saves the local verified and unverified
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
verified_df (Dataframe): local verified rows dataframe
|
----------
|
||||||
unverified_df (Dataframe): local unverified rows dataframe
|
verified_df : pd.DataFrame
|
||||||
|
Local verified rows dataframe
|
||||||
|
unverified_df : DataFrame
|
||||||
|
Local unverified rows dataframe
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
bool: True if successful, False if not
|
-------
|
||||||
|
bool
|
||||||
|
True if successful, False if not
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
current_instance = get_current_instance() + '/'
|
|
||||||
|
|
||||||
verified_df.to_csv(f'{conf.PARTICIPANT_DIR}{current_instance}verified.csv', index=False)
|
save_dataframe(verified_df, f'{conf.LOCAL_DIR}verified.csv')
|
||||||
|
|
||||||
unverified_df.to_csv(f'{conf.PARTICIPANT_DIR}{current_instance}unverified.csv', index=False)
|
save_dataframe(unverified_df, f'{conf.LOCAL_DIR}unverified.csv')
|
||||||
|
|
||||||
print_colors('[+] Verified and unverified saved successfully')
|
print_colors('[+] Verified and unverified saved successfully')
|
||||||
|
|
||||||
|
@ -394,21 +547,28 @@ def save_local_verified_and_unverified(verified_df, unverified_df):
|
||||||
|
|
||||||
def save_local_participant_verified_and_unverified(verified_df, unverified_df, participant):
|
def save_local_participant_verified_and_unverified(verified_df, unverified_df, participant):
|
||||||
"""
|
"""
|
||||||
saves the local verified and unverified of a participant
|
Saves the local verified and unverified of a participant
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
verified_df (Dataframe): local verified rows dataframe
|
----------
|
||||||
unverified_df (Dataframe): local unverified rows dataframe
|
verified_df pd.DataFrame
|
||||||
participant (str): participant's onion local path
|
Local verified rows dataframe
|
||||||
|
unverified_df pd.DataFrame
|
||||||
|
Local unverified rows dataframe
|
||||||
|
participant : str
|
||||||
|
Participant's onion local path
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
bool: True if successful, False if not
|
-------
|
||||||
|
bool
|
||||||
|
True if successful, False if not
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
||||||
verified_df.to_csv(f'{participant}verified.csv', index=False)
|
save_dataframe(verified_df, f'{participant}verified.csv')
|
||||||
|
|
||||||
unverified_df.to_csv(f'{participant}unverified.csv', index=False)
|
save_dataframe(unverified_df, f'{participant}unverified.csv')
|
||||||
|
|
||||||
print_colors('[+] Verified and unverified saved successfully')
|
print_colors('[+] Verified and unverified saved successfully')
|
||||||
|
|
||||||
|
@ -418,43 +578,82 @@ def save_local_participant_verified_and_unverified(verified_df, unverified_df, p
|
||||||
print_colors('[-] Saving verified and unverified failed',is_error=True)
|
print_colors('[-] Saving verified and unverified failed',is_error=True)
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def save_dataframe(df, path):
|
||||||
|
"""
|
||||||
|
Saves a dataframe
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
df : pd.DataFrame
|
||||||
|
Dataframe wants to be saved
|
||||||
|
|
||||||
|
path : str
|
||||||
|
Local path for the dataframe
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
bool
|
||||||
|
True if saved, False if not
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
df.to_csv(path, index=False)
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
return False
|
||||||
|
|
||||||
###################### Getters/Generators ######################
|
###################### Getters/Generators ######################
|
||||||
def generate_participant_url(participant):
|
def generate_participant_url(participant):
|
||||||
"""
|
"""
|
||||||
generates url of the webring participant
|
Generates url of the webring participant
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
participant(str): participant's onion address/instance
|
----------
|
||||||
|
participant : str
|
||||||
|
Participant's onion address/instance
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
str: the url of the webring participant
|
-------
|
||||||
|
str
|
||||||
|
The url of the webring participant
|
||||||
"""
|
"""
|
||||||
|
|
||||||
return f'http://{participant}/participants/{participant}/'
|
return f'http://{participant}/participants/{participant}/'
|
||||||
|
|
||||||
def generate_local_participant_dir(participant):
|
def generate_local_participant_dir(participant):
|
||||||
"""
|
"""
|
||||||
generates local files path of the webring participant
|
Generates local files path of the webring participant
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
participant(str): participant's onion address/instance
|
----------
|
||||||
|
participant : str
|
||||||
|
Participant's onion address/instance
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
str: the local path of the webring participant's files
|
-------
|
||||||
|
str
|
||||||
|
The local path of the webring participant's files
|
||||||
"""
|
"""
|
||||||
|
|
||||||
return f'{conf.PARTICIPANT_DIR}{participant}/'
|
return f'{conf.PARTICIPANT_DIR}{participant}/'
|
||||||
|
|
||||||
def get_participant_local_verified_and_unverified(participant):
|
def get_participant_local_verified_and_unverified(participant):
|
||||||
"""
|
"""
|
||||||
reads the local verified csv and the local unverified csv of a participant
|
Reads the local verified csv and the local unverified csv of a participant
|
||||||
|
|
||||||
Parameters:
|
Parameters
|
||||||
participant (str): participant's local files path
|
----------
|
||||||
|
participant : str
|
||||||
|
Participant's local files path
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
verified_df(Dataframe): verified.csv as dataframe
|
-------
|
||||||
unverified_df(Dataframe): unverified.csv as dataframe
|
pd.DataFrame
|
||||||
|
verified.csv as dataframe
|
||||||
|
pd.DataFrame
|
||||||
|
unverified.csv as dataframe
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -462,24 +661,26 @@ def get_participant_local_verified_and_unverified(participant):
|
||||||
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print_colors("[-] File not found: verified.csv", is_error=True)
|
print_colors("[-] File not found: verified.csv", is_error=True)
|
||||||
return pd.Dataframe(), pd.Dataframe()
|
return pd.DataFrame(), pd.DataFrame()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
unverified_df = pd.read_csv(f'{participant}unverified.csv')
|
unverified_df = pd.read_csv(f'{participant}unverified.csv')
|
||||||
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print_colors("[-] Participant File not found: unverified.csv", is_error=True)
|
print_colors("[-] Participant File not found: unverified.csv", is_error=True)
|
||||||
return pd.Dataframe(), pd.Dataframe()
|
return pd.DataFrame(), pd.DataFrame()
|
||||||
|
|
||||||
return verified_df, unverified_df
|
return verified_df, unverified_df
|
||||||
|
|
||||||
|
|
||||||
def get_official_participants():
|
def get_official_participants():
|
||||||
"""
|
"""
|
||||||
reads all the official webring participants
|
Reads all the official webring participants
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
list: list of all the official webring participants
|
-------
|
||||||
|
list
|
||||||
|
List of all the official webring participants
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -491,58 +692,78 @@ def get_official_participants():
|
||||||
except Exception as err:
|
except Exception as err:
|
||||||
print_colors('[-] Couldn\'t read official webring participants file',is_error=True )
|
print_colors('[-] Couldn\'t read official webring participants file',is_error=True )
|
||||||
|
|
||||||
def get_local_blacklist_and_sensitive():
|
def get_local_blacklist():
|
||||||
"""
|
"""
|
||||||
reads the local blacklisted words and the local sensitive words
|
Reads the local blacklist
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
blacklist(list): list of all the words that are blacklisted
|
-------
|
||||||
sensitive_list(list): list of all the words that are sensitive
|
blacklist_df : pd.DataFrame
|
||||||
|
Dataframe of the blacklist
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
current_instance = get_current_instance() + '/'
|
|
||||||
try:
|
try:
|
||||||
blacklist_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}blacklist.csv')
|
blacklist_df = pd.read_csv(f'{conf.LOCAL_DIR}blacklist.csv')
|
||||||
blacklist = blacklist_df.iloc[:, 0].tolist()
|
|
||||||
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print_colors("[-] File not found: blacklist.csv", is_error=True)
|
print_colors("[-] File not found: blacklist.csv", is_error=True)
|
||||||
|
|
||||||
|
|
||||||
|
return blacklist_df
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print_colors('[-] Failed reading the blacklist words file',is_error=True)
|
||||||
|
|
||||||
|
return pd.DataFrame()
|
||||||
|
|
||||||
|
def get_local_sensitive():
|
||||||
|
"""
|
||||||
|
Reads the local sensitive words
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
sensitive_list list
|
||||||
|
List of all the words that are sensitive
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
|
||||||
try:
|
try:
|
||||||
sensitive_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}sensitive.csv')
|
sensitive_df = pd.read_csv(f'{conf.LOCAL_DIR}sensitive.csv')
|
||||||
sensitive_list = sensitive_df.iloc[:, 0].tolist()
|
|
||||||
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print_colors("[-] File not found: sensitive.csv", is_error=True)
|
print_colors("[-] File not found: sensitive.csv", is_error=True)
|
||||||
|
|
||||||
|
|
||||||
return blacklist, sensitive_list
|
return sensitive_df
|
||||||
|
|
||||||
|
|
||||||
except Exception as err:
|
except Exception as err:
|
||||||
print_colors('[-] Failed reading the blacklist and sensitive words file',is_error=True)
|
print_colors('[-] Failed reading the sensitive words file',is_error=True)
|
||||||
|
|
||||||
return [], []
|
return pd.DataFrame()
|
||||||
|
|
||||||
def get_local_verified_and_unverified():
|
def get_local_verified_and_unverified():
|
||||||
"""
|
"""
|
||||||
reads the local verified csv and the local unverified csv of the instance
|
Reads the local verified csv and the local unverified csv of the instance
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
verified_df(Dataframe): verified.csv as dataframe
|
-------
|
||||||
unverified_df(Dataframe): unverified.csv as dataframe
|
verified_df : pd.DataFrame
|
||||||
|
verified.csv as dataframe
|
||||||
|
unverified_df : pd.DataFrame
|
||||||
|
unverified.csv as dataframe
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
current_instance = get_current_instance() + '/'
|
|
||||||
try:
|
try:
|
||||||
verified_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}verified.csv')
|
verified_df = pd.read_csv(f'{conf.LOCAL_DIR}verified.csv')
|
||||||
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print_colors("[-] File not found: verified.csv", is_error=True)
|
print_colors("[-] File not found: verified.csv", is_error=True)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
unverified_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}unverified.csv')
|
unverified_df = pd.read_csv(f'{conf.LOCAL_DIR}unverified.csv')
|
||||||
|
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
print_colors("[-] File not found: unverified.csv", is_error=True)
|
print_colors("[-] File not found: unverified.csv", is_error=True)
|
||||||
|
@ -556,10 +777,12 @@ def get_local_verified_and_unverified():
|
||||||
|
|
||||||
def get_local_webring_participants():
|
def get_local_webring_participants():
|
||||||
"""
|
"""
|
||||||
make sure the official participants are registered in the webring csv file
|
Make sure the official participants are registered in the webring csv file
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
Dataframe: the verified local webring participants dataframe
|
-------
|
||||||
|
pd.DataFrame
|
||||||
|
The verified local webring participants dataframe
|
||||||
"""
|
"""
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
@ -572,7 +795,7 @@ def get_local_webring_participants():
|
||||||
new_row = [{'Name': '','URL': participant,'Description': '','Trusted': 'NO','Status': '','Score': ''}]
|
new_row = [{'Name': '','URL': participant,'Description': '','Trusted': 'NO','Status': '','Score': ''}]
|
||||||
webring_df = pd.concat([webring_df, pd.DataFrame(new_row)], ignore_index=True)
|
webring_df = pd.concat([webring_df, pd.DataFrame(new_row)], ignore_index=True)
|
||||||
|
|
||||||
webring_df.to_csv(conf.LOCAL_DIR + conf.WEBRING_CSV_FILE, index=False)
|
save_dataframe(webring_df, conf.LOCAL_DIR + conf.WEBRING_CSV_FILE)
|
||||||
|
|
||||||
return webring_df
|
return webring_df
|
||||||
|
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
Name,URL,Description,Trusted,Status,Score
|
Name,URL,Description,Trusted,Status,Score,Blacklisted
|
||||||
|
|
|
Loading…
Add table
Add a link
Reference in a new issue