FINished adding the trusted and the refactoring of 6

This commit is contained in:
doctor_dev 2025-06-03 16:58:03 +00:00
parent 8b0ba4833f
commit 14231fff92
No known key found for this signature in database
GPG key ID: F12F7F71CB84AEAA
5 changed files with 631 additions and 321 deletions

View file

@ -7,11 +7,15 @@ def download_participant_data(participant):
"""
Downloads the participants csv files and banner
Parameters:
participant (str): The url of the webring participant.
Parameters
----------
participant : str
The url of the webring participant.
Returns:
Boolean: True if all files downloaded, False if any of them failed
Returns
-------
Boolean
True if all files downloaded, False if any of them failed
"""
try:
@ -44,28 +48,34 @@ def download_participant_data(participant):
utils.print_colors(f"[+] Downloaded webring {participant} csv files and banner")
except Exception as err:
print_colors("[-] Downloading webring participant's files failed.", is_error=True)
utils.print_colors("[-] Downloading webring participant's files failed.", is_error=True)
def clean_csv(df, blacklist):
"""
Cleans duplications and blacklisted rows
Parameters:
df (dataframe): The dataframe we want to clean.
blacklist (list): The blacklisted words.
Parameters
----------
df pd.DataFrame
The dataframe we want to clean.
blacklist : list
The blacklisted words.
Returns:
Dataframe: Cleaned dataframe.
Returns
-------
pd.DataFrame
Cleaned dataframe.
"""
try:
if not df.empty:
df = utils.remove_duplications(df)
df = df[~df.apply(lambda row: any(word in str(value) for word in blacklist for value in row), axis=1)]
if not df.empty:
df = df[df.apply(utils.is_row_valid, axis=1)]
except Exception as err:
print_colors("[-] cleaning dataframe failed", is_error=True)
@ -75,12 +85,17 @@ def mark_sensitive(df, sensitive_list):
"""
Marks rows as sensitive
Parameters:
df (dataframe): The dataframe we want to mark.
sensitive (list): The sensitive words.
Parameters
----------
df : pd.DataFrame
The dataframe we want to mark.
sensitive : list
The sensitive words.
Returns:
Dataframe: Marked dataframe.
Returns
-------
pd.DataFrame
Marked dataframe.
"""
try:
@ -91,6 +106,72 @@ def mark_sensitive(df, sensitive_list):
df.loc[~sensitive_rows, 'Sensitive'] = 'NO'
except Exception as err:
print_colors("[-] MArking sensitive words failed.", is_error=True)
print_colors("[-] Marking sensitive words failed.", is_error=True)
return df
return df
def mark_webring_participant_trusted(webring_df, participant_id, trustworthy):
"""
Marks a webring to be trusted or not
Parameters
----------
webring_df : pd.DataFrame
dataframe of all the webring participants
participant_id : int
the index of the participant
trustworthy : bool
is the participant trustworthy or not
Returns
-------
pd.DataFrame
Marked webring dataframe with trust/untrust.
"""
try:
webring_df.iloc[participant_id, webring_df.columns.get_loc('Trusted')] = "YES" if trustworthy else "NO"
except Exception as err:
utils.print_colors("[-] Trusting or untrusting a webring participant failed", is_error = True)
return webring_df
def mark_webring_participant_blacklist(webring_df, participant_instance, participant_id, blacklisted):
"""
Marks a webring to be blacklisted or not
Parameters
----------
webring_df : pd.DataFrame
dataframe of all the webring participants
participant_id :int
the index of the participant
blacklisted : bool
is the participant set to be blacklisted or not
Returns
-------
pd.DataFrame
Marked webring dataframe with blacklist/unblacklist.
"""
try:
if blacklisted:
webring_df.iloc[participant_id, webring_df.columns.get_loc('Blacklisted')] = "YES"
utils.print_colors(f'[+] Adding new word to blacklist')
local_blacklist_df = utils.add_word_to_blacklist(participant_instance)
else:
webring_df.iloc[participant_id, webring_df.columns.get_loc('Blacklisted')] = "NO"
utils.print_colors(f'[+] Removing word from blacklist')
local_blacklist_df = utils.remove_word_from_blacklist(participant_instance)
except Exception as err:
utils.print_colors("[-] Blacklisting or unblacklisting a webring participlant failed", is_error = True)
raise err
return webring_df

213
scripts/logic/options.py Normal file
View file

@ -0,0 +1,213 @@
import utils
import conf
import lantern_logic as lantern
def run_option_4():
try:
utils.print_colors("4) Synchronize new links from new or existing webring participants, into your local csv files")
utils.print_colors('[+] Syncing official webrings to local webrings')
webring_df = utils.get_local_webring_participants()
current_instance = utils.get_current_instance()
utils.print_colors('[+] Reading local blacklist and sensitive words')
local_blacklist_df = utils.get_local_blacklist()
local_sensitive_df = utils.get_local_sensitive()
utils.print_colors('[+] Reading local verified and unverified')
local_verified_df, local_unverified_df = utils.get_local_verified_and_unverified()
#Remove all rows
local_unverified_df = local_unverified_df[0:0]
local_verified_df = local_verified_df[0:0]
for participant in webring_df.itertuples(index=False, name='columns'):
# Check if the participant is my instance
if current_instance in participant:
continue
if participant.Blacklisted == 'YES':
continue
if not utils.is_participant_reachable(participant.URL):
utils.print_colors("[-] Webring {participant.URL} isn't reachable, skipping", is_error=True)
continue
utils.print_colors('[+] Downloading participant\'s files to store locally')
lantern.download_participant_data(participant.URL)
participant_url = utils.generate_local_participant_dir(participant.URL)
utils.print_colors('[+] Reading webrring participant\'s verified and unverified')
participant_verified_df, participant_unverified_df = utils.get_participant_local_verified_and_unverified(participant_url)
utils.print_colors('[+] Removing unvalidated and blacklisted rows')
participant_verified_df = lantern.clean_csv(participant_verified_df, local_blacklist_df['blacklisted-words'].tolist())
participant_unverified_df = lantern.clean_csv(participant_unverified_df, local_blacklist_df['blacklisted-words'].tolist())
utils.print_colors('[+] Marking sensitive rows')
participant_verified_df = lantern.mark_sensitive(participant_verified_df, local_sensitive_df['sensitive-words'].tolist())
participant_unverified_df = lantern.mark_sensitive(participant_unverified_df, local_sensitive_df['sensitive-words'].tolist())
if participant.Trusted == 'YES':
utils.print_colors('[+] This participant is trusted, copying participant\'s verified to local verified')
local_verified_df = utils.merge_verification_df(local_verified_df, participant_verified_df)
else:
utils.print_colors('[+] This participant is not trusted, copying participant\'s verified to local unverified')
local_unverified_df = utils.merge_verification_df(local_unverified_df, participant_verified_df)
utils.print_colors('[+] Copying participant\'s unverified to local unverified')
local_unverified_df = utils.merge_verification_df(local_unverified_df, participant_unverified_df)
utils.print_colors('[+] Saving local verified and unverified')
utils.save_local_verified_and_unverified(local_verified_df, local_unverified_df)
except Exception as err:
utils.print_colors("[-] Option 4 failed suddently, please try again", is_error=True)
def run_option_6():
while True:
utils.print_colors("[+] Trust/UnTrust/Blacklist a webring participant (Potentially dangerous)")
webring_df = utils.get_local_webring_participants()
webring_path = conf.LOCAL_DIR + conf.WEBRING_CSV_FILE
utils.print_colors(f'{webring_df[["URL","Trusted", "Blacklisted"]]}')
try:
index = int(input('What is the index of the webring participant that you want to edit? -1 to exit ').strip())
if index == -1:
break
if index in webring_df.index:
choice = input('Do you want to 1) Trust, 2) UnTrust, or 3) Blacklist the webring participant?').strip()
utils.print_colors('[+] Reading local verified and unverified')
local_verified_df, local_unverified_df = utils.get_local_verified_and_unverified()
participant_instance = webring_df.iloc[index, webring_df.columns.get_loc("URL")]
match choice:
case '1':
# trust the webring participant
approve=input('You\'re about to trust another peer, this means that you\'re going to automatically trust all of the links they have in their verified.csv file! If this is a malicious peer, this action might be potentially risky! Do you want to continue ? (y/n)')
# to lower case incase someone enters Y instead of y
if approve.lower() == 'y':
try:
utils.print_colors(f'[+] Trusting webring participant {participant_instance}')
webring_df = lantern.mark_webring_participant_trusted(webring_df, index, True)
webring_df = lantern.mark_webring_participant_blacklist(webring_df, participant_instance, index, False)
except Exception as err:
utils.print_colors('[-] Trusting webring participant failed', is_error=True)
else:
utils.print_colors('[-] not trusting webring participant', is_error=True)
case '2':
try:
utils.print_colors(f'[+] Untrusting webring participant {participant_instance}')
webring_df = lantern.mark_webring_participant_trusted(webring_df, index, False)
webring_df = lantern.mark_webring_participant_blacklist(webring_df, participant_instance, index, False)
except Exception as err:
utils.print_colors('[-] Untrusting webring participant failed', is_error=True)
case '3':
try:
utils.print_colors(f'[+] Blacklisting webring participant {participant_instance}')
webring_df = lantern.mark_webring_participant_trusted(webring_df, index, False)
webring_df = lantern.mark_webring_participant_blacklist(webring_df, participant_instance, index, True)
local_blacklist_df = utils.get_local_blacklist()
utils.print_colors('[+] Removing unvalidated and blacklisted rows')
local_verified_df = lantern.clean_csv(local_verified_df, local_blacklist_df['blacklisted-words'].tolist())
local_unverified_df = lantern.clean_csv(local_verified_df, local_blacklist_df['blacklisted-words'].tolist())
participant_dir = f'{conf.PARTICIPANT_DIR}{participant_instance}'
utils.print_colors(f"[+] removing the participant's directory at {participant_dir}")
shutil.rmtree(participant_dir)
except FileNotFoundError as err:
utils.print_colors('[-] File already blacklisted', is_error=True)
except Exception as err:
utils.print_colors('[-] Blacklisting webring participant failed', is_error=True)
utils.save_dataframe(webring_df, webring_path)
utils.print_colors('[+] Saving local verified and unverified')
utils.save_local_verified_and_unverified(local_verified_df, local_unverified_df)
except Exception as err:
utils.print_colors("[-] Option 6 failed suddently, please try again", is_error=True)
def run_option_9():
utils.print_colors("[+] 9) Cleaning up all duplicates in your own unverified + verified.csv (based on the url)")
try:
utils.print_colors('[+] Reading local verified and unverified')
verified_df, unverified_df = utils.get_local_verified_and_unverified()
utils.print_colors('[+] Removing cross dataframe replications')
verified_df, unverified_df = utils.remove_cross_dataframe_replications(verified_df, unverified_df)
utils.print_colors('[+] Saving local verified and unverified')
utils.save_local_verified_and_unverified(verified_df, unverified_df)
except Exception as err:
utils.print_colors("[-] Option 9 failed suddenly, please try again", is_error=True)
def run_option_10():
utils.print_colors("[+] 10) perform sanity checks on all csv files (to mark them as sensitive / or remove the ones that are blacklisted)")
try:
utils.print_colors('[+] Reading local blacklist and sensitive words')
local_blacklist_df = utils.get_local_blacklist()
local_sensitive_df = utils.get_local_sensitive()
for participant in os.listdir(conf.PARTICIPANT_DIR):
participant_local_dir = conf.PARTICIPANT_DIR + participant + '/'
utils.print_colors('[+] Reading webrring participant\'s verified and unverified')
participant_verified_df, participant_unverified_df = utils.get_participant_local_verified_and_unverified(participant_local_dir)
utils.print_colors('[+] Removing unverified and blacklisted rows')
participant_verified_df = lantern.clean_csv(participant_verified_df, local_blacklist_df['blacklisted-words'].tolist())
participant_unverified_df = lantern.clean_csv(participant_unverified_df, local_blacklist_df['blacklisted-words'].tolist())
utils.print_colors('[+] Marking sensitive rows')
participant_verified_df = lantern.mark_sensitive(participant_verified_df, local_sensitive_df['sensitive-words'].tolist())
participant_unverified_df = lantern.mark_sensitive(participant_unverified_df, local_sensitive_df['sensitive-words'].tolist())
utils.print_colors('[+] Saving local participant verified and unverified')
utils.save_local_participant_verified_and_unverified(participant_verified_df, participant_unverified_df, participant_local_dir)
except Exception as err:
utils.print_colors("[-] Option 10 failed suddently, please try again", is_error=True)