mirror of
http://git.nowherejezfoltodf4jiyl6r56jnzintap5vyjlia7fkirfsnfizflqd.onion/nihilist/darknet-lantern.git
synced 2025-07-01 13:26:40 +00:00
Refactored option 4 + added conf.py + added some TODO comments for review
This commit is contained in:
parent
4b33e51d11
commit
b07ac08547
6 changed files with 429 additions and 281 deletions
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -1,7 +1,7 @@
|
|||
.git
|
||||
www/participants/**
|
||||
crawler/**
|
||||
scripts/__pycache__/**
|
||||
__pycache__/
|
||||
.env
|
||||
env/
|
||||
submissions/submission.csv
|
||||
|
|
|
@ -1,15 +1,17 @@
|
|||
beautifulsoup4==4.13.3
|
||||
certifi==2024.12.14
|
||||
charset-normalizer==3.4.1
|
||||
certifi==2025.4.26
|
||||
charset-normalizer==3.4.2
|
||||
dotenv==0.9.9
|
||||
idna==3.10
|
||||
numpy==2.2.2
|
||||
numpy==2.2.6
|
||||
pandas==2.2.3
|
||||
pillow==11.2.1
|
||||
PySocks==1.7.1
|
||||
python-dateutil==2.9.0.post0
|
||||
python-socks==2.6.1
|
||||
pytz==2024.2
|
||||
python-dotenv==1.1.0
|
||||
pytz==2025.2
|
||||
requests==2.32.3
|
||||
six==1.17.0
|
||||
tzdata==2025.1
|
||||
urllib3==2.3.0
|
||||
python-dotenv==1.0.1
|
||||
tzdata==2025.2
|
||||
urllib3==2.4.0
|
||||
websockets==15.0.1
|
||||
|
|
22
scripts/conf.py
Normal file
22
scripts/conf.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
ROOT_PATH = '/srv/darknet-lantern/'
|
||||
STATIC_PATH = ROOT_PATH + 'www/'
|
||||
TEMPLATE_PATH = ROOT_PATH + 'templates/'
|
||||
|
||||
PARTICIPANT_DIR = STATIC_PATH + 'participants/'
|
||||
OFFICIAL_PARTICIPANTS_FILE = STATIC_PATH + '.official_participants'
|
||||
WEBRING_CSV_FILE = 'webring-participants.csv'
|
||||
|
||||
LOCAL_DIR = '' # Assign on script startup
|
||||
|
||||
PROXIES = {
|
||||
'http': 'socks5h://127.0.0.1:9050',
|
||||
'https': 'socks5h://127.0.0.1:9050'
|
||||
}
|
||||
|
||||
CSV_FILES = [
|
||||
'verified.csv',
|
||||
'unverified.csv',
|
||||
'blacklist.csv',
|
||||
'sensitive.csv',
|
||||
'webring-participants.csv'
|
||||
]
|
|
@ -1,6 +1,9 @@
|
|||
###TODO: importing * is bad practice should import just utils and use it like in lantern_logic.py
|
||||
from utils import *
|
||||
import logic.lantern_logic as lantern
|
||||
from dotenv import load_dotenv
|
||||
|
||||
|
||||
import os, pwd
|
||||
import pandas as pd
|
||||
import requests
|
||||
|
@ -532,259 +535,59 @@ Maintenance:
|
|||
#####################################################
|
||||
|
||||
|
||||
|
||||
#check if it works when you have a second webring participant
|
||||
case 4:
|
||||
print_colors("4) Synchronize new links from existing webring participants, into your unverified.csv file")
|
||||
participantsdir=rootpath+'www/participants/'
|
||||
name=''
|
||||
desc=''
|
||||
trusted=''
|
||||
status=''
|
||||
score=''
|
||||
webringcsvfile=instancepath+'/'+'webring-participants.csv'
|
||||
wdf = pd.read_csv(webringcsvfile, on_bad_lines='skip')
|
||||
for participant in os.listdir(participantsdir):
|
||||
participantdir=participantsdir+participant
|
||||
print_colors("4) Synchronize new links from new or existing webring participants, into your local csv files")
|
||||
|
||||
# NOTE check if the webring participant is yourself, if it is, then skip it
|
||||
if participant != myinstance: # prod: dont use your own intance
|
||||
#if participant == myinstance: # preprod testing only on your own instance
|
||||
#overwrite the existing files in the participant's directory, with their version (download all the csv files from them again)
|
||||
basewurl='http://'+participant+'/participants/'+participant+'/'
|
||||
print_colors(f"{basewurl}")
|
||||
print_colors(f"[+] Downloading the files of: {participant} ")
|
||||
w_vcsv=basewurl+'verified.csv'
|
||||
w_uvcsv=basewurl+'unverified.csv'
|
||||
w_blcsv=basewurl+'blacklist.csv'
|
||||
w_scsv=basewurl+'sensitive.csv'
|
||||
w_webcsv=basewurl+'webring-participants.csv'
|
||||
print_colors('[+] Syncing official webrings to local webrings')
|
||||
|
||||
# verify that their verified.csv csv file exists at basewurl+'verified.csv'
|
||||
if CheckUrl(w_vcsv) is False or CheckUrl(w_uvcsv) is False or CheckUrl(w_blcsv) is False or CheckUrl(w_scsv) is False or CheckUrl(w_webcsv) is False:
|
||||
print_colors("[-] Webring Participant isn't reachable, skipping", is_error=True)
|
||||
else: #if the webring participant is reachable, proceed
|
||||
print_colors("[+] Webring Participant is reachable, updating their csv files:")
|
||||
for i in ['verified.csv','unverified.csv','blacklist.csv','sensitive.csv','webring-participants.csv']:
|
||||
# FOR EACH CSV FILE TO GET:
|
||||
# URL: basewurl / FILE.CSV
|
||||
# PATH: participantdir / FILE.CSV
|
||||
# download the external csv file and save it into the "text" variable:
|
||||
#response = urllib.request.urlopen(basewurl+i)
|
||||
response = requests.get(basewurl+i, proxies=proxies)
|
||||
#data = response.read() # a `bytes` object
|
||||
#text = data.decode('utf-8')
|
||||
text = response.text
|
||||
# save the text variable into the destination file:
|
||||
csvfilepath=participantdir+'/'+i
|
||||
with open(csvfilepath, "w") as file:
|
||||
file.write(text)
|
||||
f = open(csvfilepath,"r")
|
||||
webring_df = verify_official_participants_registered()
|
||||
|
||||
# download the banner.png image:
|
||||
current_instance = get_current_instance()
|
||||
|
||||
for participant in webring_df.itertuples(index=False, name='columns'):
|
||||
# Check if the participant is my instance
|
||||
if current_instance in participant:
|
||||
continue
|
||||
|
||||
bannerurl=basewurl+'banner.png'
|
||||
bannerpath=participantdir+'/banner.png'
|
||||
r = requests.get(bannerurl, stream=True, proxies=proxies)
|
||||
with open(bannerpath, 'wb') as f:
|
||||
r.raw.decode_content = True
|
||||
shutil.copyfileobj(r.raw, f)
|
||||
if not is_participant_reachable(participant.URL):
|
||||
print_colors("[-] Webring {participant.URL} isn't reachable, skipping", is_error=True)
|
||||
continue
|
||||
|
||||
print_colors('[+] Downloading participant\'s files to store locally')
|
||||
lantern.download_participant_data(participant.URL)
|
||||
|
||||
# SANITY CHECK ON THE BANNER PNG IMAGE:
|
||||
if IsBannerValid(bannerpath):
|
||||
pass
|
||||
else:
|
||||
# if false, overwrite it with the template banner png file
|
||||
os.remove(bannerpath)
|
||||
# copy templates/banner.png to bannerpath
|
||||
bannertemplatepath=templatepath+'banner.png'
|
||||
shutil.copyfile(bannertemplatepath, bannerpath)
|
||||
print_colors('[+] Reading local blacklist and sensitive words')
|
||||
local_blacklist, local_sensitive = get_local_blacklist_and_sensitive()
|
||||
|
||||
print_colors('[+] Reading local verified and unverified')
|
||||
local_verified_df, local_unverified_df = get_local_verified_and_unverified()
|
||||
|
||||
participant_url = generate_local_participant_dir(participant.URL)
|
||||
|
||||
# check if the participant is already listed in webring-participants.csv or not, and add them if not already listed
|
||||
# and display only the matching entries in unverified.csv in an array format (display it in CLI).
|
||||
filter_wdf = wdf[wdf.URL.str.contains(participant,na=False)]
|
||||
# check if there are no results, dont proceed if there are none!
|
||||
if filter_wdf.size == 0: #skip if webring participant is already listed, otherwise proceed
|
||||
newrow=[name,participant,desc,trusted,status,score]
|
||||
wdf.loc[-1] = newrow # adding a row
|
||||
wdf.index = wdf.index + 1 # shifting index
|
||||
wdf = wdf.sort_index() # sorting by index
|
||||
wdf.to_csv(webringcsvfile, index=False)
|
||||
else:
|
||||
pass
|
||||
print_colors('[+] Reading webrring participant\'s verified and unverified, and removing unverified and blacklisted rows')
|
||||
participant_verified_df = lantern.clean_csv(pd.read_csv(f'{participant_url}verified.csv'), local_blacklist)
|
||||
participant_unverified_df = lantern.clean_csv(pd.read_csv(f'{participant_url}unverified.csv'), local_blacklist)
|
||||
|
||||
# iterate through the participant's verified.csv and unverified.csv files
|
||||
for w in ['verified.csv','unverified.csv']:
|
||||
csvfilepath=participantdir+'/'+w
|
||||
print_colors(f"{csvfilepath}")
|
||||
csvdf = pd.read_csv(csvfilepath, on_bad_lines='skip')
|
||||
print_colors('[+] Marking sensitive rows')
|
||||
participant_verified_df = lantern.mark_sensitive(participant_verified_df, local_sensitive)
|
||||
participant_unverified_df = lantern.mark_sensitive(participant_unverified_df, local_sensitive)
|
||||
|
||||
if participant.Trusted == 'YES':
|
||||
print_colors('[+] This participant is trusted, copying participant\'s verified to local verified')
|
||||
local_verified_df = merge_verification_df(local_verified_df, participant_verified_df)
|
||||
|
||||
else:
|
||||
print_colors('[+] This participant is not trusted, copying participant\'s verified to local unverified')
|
||||
local_unverified_df = merge_verification_df(local_unverified_df, participant_verified_df)
|
||||
|
||||
print_colors('[+] Copying participant\'s unverified to local unverified')
|
||||
local_unverified_df = merge_verification_df(local_unverified_df, participant_unverified_df)
|
||||
|
||||
print("[+] Removing the participant's duplicate entries... ")
|
||||
# REMOVE DUPLICATES !!! do not accept any duplicate from remote participants
|
||||
csvdf = csvdf.drop_duplicates(subset=['URL'], keep="first", inplace=False)
|
||||
csvdf = csvdf.drop_duplicates(subset=['Name'], keep="first", inplace=False)
|
||||
csvdf.to_csv(csvfilepath, index=False)
|
||||
|
||||
csvdf = pd.read_csv(csvfilepath, on_bad_lines='skip')
|
||||
|
||||
bldf[['blacklisted-words']].iterrows()
|
||||
rows2delete= [] # it is an empty list at first
|
||||
for i,j in csvdf.iterrows():
|
||||
row=csvdf.loc[i,:].values.tolist()
|
||||
# check the number of columns in said row,
|
||||
# print('rowcolnum:',len(row),' colnum:',len(csvdf.columns))
|
||||
# print_colors(f"{row}")
|
||||
|
||||
|
||||
|
||||
|
||||
################################ SANITY CHECKS ####################################
|
||||
### SANITY CHECK 0: make sure that ✔️ and x are replaced with YES/NO, as it changed since v1.0.1 ###
|
||||
if csvdf.at[i, 'Status'] == "✔️" or csvdf.at[i, 'Status'] == "YES" :
|
||||
csvdf.at[i, 'Status'] = "YES"
|
||||
csvdf.to_csv(csvfilepath, index=False)
|
||||
else:
|
||||
csvdf.at[i, 'Status'] = "NO"
|
||||
csvdf.to_csv(csvfilepath, index=False)
|
||||
|
||||
if csvdf.at[i, 'Sensitive'] == "✔️" or csvdf.at[i, 'Sensitive'] == "YES" :
|
||||
csvdf.at[i, 'Sensitive'] = "YES"
|
||||
csvdf.to_csv(csvfilepath, index=False)
|
||||
else:
|
||||
csvdf.at[i, 'Sensitive'] = "NO"
|
||||
csvdf.to_csv(csvfilepath, index=False)
|
||||
|
||||
### SANITY CHECK 1: Mark all the rows that have incorrect formatting for deletion###
|
||||
if IsUrlValid(csvdf.at[i, 'Instance']) is False or IsCategoryValid(csvdf.at[i, 'Category']) is False or IsNameValid(csvdf.at[i, 'Name']) is False or IsUrlValid(csvdf.at[i, 'URL']) is False or IsStatusValid(csvdf.at[i, 'Sensitive']) is False or IsDescriptionValid(csvdf.at[i, 'Description']) is False or IsStatusValid(csvdf.at[i, 'Status']) is False or IsScoreValid(csvdf.at[i, 'Score']) is False:
|
||||
#mark the row for deletion as it has invalid inputs
|
||||
if i not in rows2delete:
|
||||
print_colors(f"Marking row {i} for deletion, as it has invalid inputs")
|
||||
print(row)
|
||||
rows2delete.append(i) #mark the row for deletion if not already done
|
||||
|
||||
### SANITY CHECK 2: Mark all rows that are not allowed (blacklist) for deletion ###
|
||||
for k,l in bldf.iterrows():
|
||||
blword=bldf.at[k, 'blacklisted-words']
|
||||
if any(blword in str(x) for x in row) == True:
|
||||
if i not in rows2delete:
|
||||
print_colors(f"Marking row {i} for deletion, as it matches with a blacklisted word")
|
||||
rows2delete.append(i) #mark the row for deletion if not already done
|
||||
else:
|
||||
if i not in rows2delete:
|
||||
# not a blacklisted link, therefore it is suitable to be added to your own csv files:
|
||||
################################ CHECKING FOR DUPLICATES! #########################
|
||||
# for each link in the participant's verified/unverified csv files,
|
||||
# check if the link is already listed in your own verified.csv or unverified.csv
|
||||
filterterm=csvdf.at[i, 'URL']
|
||||
#print('1)',filterterm)
|
||||
filter_vdf= vdf[vdf.URL.str.contains(filterterm,na=False)]
|
||||
filter_vdf2= vdf[vdf.Name.str.contains(filterterm,na=False)] # do not accept the new link if the name already exists in verified.csv
|
||||
#print('2)',filter_vdf)
|
||||
#print('3)',uvdf[uvdf.URL.str.contains(filterterm,na=False)] )
|
||||
uvdf = pd.read_csv(unverifiedcsvfile, on_bad_lines='skip')
|
||||
# TODO DELETE ALL DUPLICATES OF UVDF !
|
||||
uvdf = uvdf.drop_duplicates(subset=['URL'], keep="first", inplace=False)
|
||||
uvdf = uvdf.drop_duplicates(subset=['Name'], keep="first", inplace=False)
|
||||
filter_uvdf= uvdf[uvdf.URL.str.contains(filterterm,na=False)]
|
||||
filter_uvdf2= uvdf[uvdf.Name.str.contains(filterterm,na=False)] # do not accept the new link if the name already exists in unverified.csv
|
||||
if len(filter_uvdf.index) == 0 and len(filter_vdf.index) == 0 and len(filter_uvdf2.index) == 0 and len(filter_vdf2.index) == 0 :
|
||||
newrow=row
|
||||
uvdf.loc[-1] = newrow # adding a row
|
||||
uvdf.index = uvdf.index + 1 # shifting index
|
||||
uvdf = uvdf.sort_index() # sorting by index
|
||||
uvdf.to_csv(unverifiedcsvfile, index=False)
|
||||
|
||||
print("[+] NEW ROW =",newrow)
|
||||
print_colors("[+] New row added to your own unverified.csv file!")
|
||||
else:
|
||||
pass
|
||||
#print_colors(f'[-] Skipping row as it is already added in {w} {row}',is_error=True)
|
||||
|
||||
|
||||
|
||||
###################### APPENDING TO YOUR OWN UNVERIFIED.CSV FILE###################
|
||||
|
||||
|
||||
### SANITY CHECK 3: Mark all the rows that are supposed to be sensitive ###
|
||||
for k,l in sedf.iterrows():
|
||||
seword=sedf.at[k, 'sensitive-words']
|
||||
if any(seword in str(x) for x in row) == True:
|
||||
if csvdf.at[i, 'Sensitive'] != 'NO':
|
||||
print_colors(f"Marking row {i} as sensitive, as it matches with a sensitive word")
|
||||
csvdf.at[i, 'Sensitive']='YES'
|
||||
|
||||
#print_colors(f'[-] Rows to delete: {rows2delete}', is_error=True)
|
||||
# only delete rows after you've gone through all the unverified.csv OR verified.csv rows'
|
||||
# check for NAME duplicates and mark them for deletion:
|
||||
# remove name duplicates that are in unverifie.csv yet exist in verified.csv (as verified.csv takes the priority)
|
||||
if w == 'unverified.csv':
|
||||
try:
|
||||
# check if the given row Name already exists in verified.csv
|
||||
filterterm=csvdf.at[i, 'Name']
|
||||
filter_vdf= vdf[vdf.Name.str.contains(filterterm,na=False)]
|
||||
print('[+] CHECKING FOR DUPLIATES: ',filterterm)
|
||||
if len(filter_vdf.index) != 0:
|
||||
# drop the unverified.csv row if its name already exists in verified.csv
|
||||
print('[+] DUPLICATE FOUND, MARKING ROW FOR DELETION: ',row)
|
||||
rows2delete.append(i) #mark the row for deletion if not already done
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
for i in rows2delete:
|
||||
row=csvdf.loc[i,:].values.tolist()
|
||||
print_colors(f'[+] REMOVING ROW: {i}{row}')
|
||||
csvdf.drop(i, inplace= True)
|
||||
csvdf.to_csv(csvfilepath, index=False)
|
||||
rows2delete= [] # it is an empty list at first
|
||||
|
||||
# fill missing description in our unverified.csv that other participants verified.csv have filled
|
||||
if w == 'verified.csv':
|
||||
uvdf = pd.read_csv(unverifiedcsvfile, on_bad_lines='skip')
|
||||
# merge participant's verified.csv on our unverified.csv on URL
|
||||
merged_df = uvdf.merge(csvdf[['URL', 'Description']],
|
||||
on='URL',
|
||||
how='left',
|
||||
suffixes=('', '_participant'))
|
||||
# filter empty description that has participant's description
|
||||
no_descr_filter = ((merged_df['Description'].isna()) | (merged_df['Description'].str.strip() == '')) & \
|
||||
(~merged_df['Description_participant'].isna()) & (merged_df['Description_participant'].str.strip() != '')
|
||||
no_descr_filter_count = no_descr_filter.sum()
|
||||
# update our empty description if the participant has any filled description
|
||||
if no_descr_filter_count > 0:
|
||||
merged_df.loc[no_descr_filter, 'Description'] = merged_df.loc[no_descr_filter, 'Description_participant']
|
||||
# keep only original columns
|
||||
uvdf_updated = merged_df[uvdf.columns]
|
||||
uvdf_updated.to_csv(unverifiedcsvfile, index=False)
|
||||
print(f'[+] Updated {no_descr_filter_count} empty description(s) in your unverified.csv found on partipant\'s {w}')
|
||||
# remove all name duplicates from your own unverified.csv file:
|
||||
for i,j in uvdf.iterrows():
|
||||
row=uvdf.loc[i,:].values.tolist()
|
||||
# check if the given row Name already exists in verified.csv
|
||||
filterterm=uvdf.at[i, 'Name']
|
||||
filter_vdf= vdf[vdf.Name.str.contains(filterterm,na=False)]
|
||||
print('[+] CHECKING FOR DUPLIATES: ',filterterm)
|
||||
if len(filter_vdf.index) != 0:
|
||||
# drop the unverified.csv row if its name already exists in verified.csv
|
||||
print('[+] DUPLICATE FOUND, MARKING ROW FOR DELETION: ',row)
|
||||
rows2delete.append(i) #mark the row for deletion if not already done
|
||||
for i in rows2delete:
|
||||
row=uvdf.loc[i,:].values.tolist()
|
||||
print_colors(f'[+] REMOVING ROW: {i}{row}')
|
||||
uvdf.drop(i, inplace= True)
|
||||
uvdf.to_csv(unverifiedcsvfile, index=False)
|
||||
rows2delete= [] # it is an empty list at first
|
||||
print_colors('[+] Saving local verified and unverified')
|
||||
save_local_verified_and_unverified(local_verified_df, local_unverified_df)
|
||||
|
||||
break
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
case 5:
|
||||
print_colors("[+] Add a new webring participant (and download their files into their directory (without trusting them yet!))")
|
||||
webring_participant_url = ''
|
||||
|
|
96
scripts/logic/lantern_logic.py
Normal file
96
scripts/logic/lantern_logic.py
Normal file
|
@ -0,0 +1,96 @@
|
|||
import utils
|
||||
import os
|
||||
import conf
|
||||
import requests
|
||||
|
||||
def download_participant_data(participant):
|
||||
"""
|
||||
Downloads the participants csv files and banner
|
||||
|
||||
Parameters:
|
||||
participant (str): The url of the webring participant.
|
||||
|
||||
Returns:
|
||||
Boolean: True if all files downloaded, False if any of them failed
|
||||
"""
|
||||
|
||||
try:
|
||||
utils.print_colors(f"[+] Downloading webring {participant} csv files and banner")
|
||||
|
||||
local_participant_dir = utils.generate_local_participant_dir(participant)
|
||||
|
||||
os.makedirs(local_participant_dir, exist_ok=True)
|
||||
|
||||
for file_name in conf.CSV_FILES:
|
||||
|
||||
csv_res = requests.get(f'{utils.generate_participant_url(participant)}{file_name}', proxies=conf.PROXIES, timeout=10)
|
||||
|
||||
with open(f'{local_participant_dir}{file_name}', "w") as file:
|
||||
file.write(csv_res.text)
|
||||
|
||||
banner_res = requests.get(f'{utils.generate_participant_url(participant)}banner.png', stream=True, proxies=conf.PROXIES, timeout=10)
|
||||
|
||||
banner_path = f'{local_participant_dir}banner.png'
|
||||
|
||||
with open(banner_path, 'wb') as f:
|
||||
f.write(banner_res.content)
|
||||
|
||||
# SANITY CHECK ON THE BANNER PNG IMAGE:
|
||||
if not utils.IsBannerValid(banner_path):
|
||||
# if false, overwrite it with the template banner png file
|
||||
os.remove(banner_path)
|
||||
shutil.copyfile(f'{conf.TEMPLATE_PATH}banner.png', banner_path)
|
||||
|
||||
utils.print_colors(f"[+] Downloaded webring {participant} csv files and banner")
|
||||
|
||||
except Exception:
|
||||
print_colors("[-] Downloading webring participant's files failed.", is_error=True)
|
||||
|
||||
def clean_csv(df, blacklist):
|
||||
"""
|
||||
Cleans duplications and blacklisted rows
|
||||
|
||||
Parameters:
|
||||
df (dataframe): The dataframe we want to clean.
|
||||
blacklist (list): The blacklisted words.
|
||||
|
||||
Returns:
|
||||
Dataframe: Cleaned dataframe.
|
||||
"""
|
||||
try:
|
||||
if not df.empty:
|
||||
df = utils.remove_duplications(df)
|
||||
|
||||
df = df[~df.apply(lambda row: any(word in str(value) for word in blacklist for value in row), axis=1)]
|
||||
|
||||
if not df.empty:
|
||||
df = df[df.apply(utils.is_row_valid, axis=1)]
|
||||
|
||||
except Exception:
|
||||
print_colors("[-] cleaning dataframe failed", is_error=True)
|
||||
|
||||
return df
|
||||
|
||||
def mark_sensitive(df, sensitive_list):
|
||||
"""
|
||||
Marks rows as sensitive
|
||||
|
||||
Parameters:
|
||||
df (dataframe): The dataframe we want to mark.
|
||||
sensitive (list): The sensitive words.
|
||||
|
||||
Returns:
|
||||
Dataframe: Marked dataframe.
|
||||
"""
|
||||
|
||||
try:
|
||||
if not df.empty:
|
||||
sensitive_rows = df.apply(lambda row: any(word in str(value) for word in sensitive_list for value in row), axis=1)
|
||||
|
||||
df.loc[sensitive_rows, 'Sensitive'] = 'YES'
|
||||
df.loc[~sensitive_rows, 'Sensitive'] = 'NO'
|
||||
|
||||
except Exception:
|
||||
print_colors("[-] MArking sensitive words failed.", is_error=True)
|
||||
|
||||
return df
|
289
scripts/utils.py
289
scripts/utils.py
|
@ -7,7 +7,8 @@ import json
|
|||
#from SimpleX.utils import IsUrlValid
|
||||
import urllib.parse
|
||||
from websockets.sync.client import connect
|
||||
|
||||
import conf
|
||||
import pandas as pd
|
||||
|
||||
PURPLE = '\033[35;40m'
|
||||
BOLD_PURPLE = '\033[35;40;1m'
|
||||
|
@ -16,8 +17,24 @@ BOLD_RED = '\033[31;40;1m'
|
|||
RESET = '\033[m'
|
||||
|
||||
|
||||
def get_current_instance():
|
||||
"""
|
||||
Checks if all URL files are actually reachable via Tor
|
||||
|
||||
#### Checking Functions to validate that links are legit ####
|
||||
Returns:
|
||||
str: the local instance onion url
|
||||
"""
|
||||
|
||||
#expanduser gives the current user directory
|
||||
instance_file = os.path.expanduser("~") + '/.darknet_participant_url'
|
||||
|
||||
with open(instance_file) as f:
|
||||
return f.read().rstrip()
|
||||
|
||||
#Set the local dir on script run
|
||||
conf.LOCAL_DIR = conf.PARTICIPANT_DIR + get_current_instance() + '/'
|
||||
|
||||
###################### Validations ######################
|
||||
|
||||
def CheckUrl(url):
|
||||
"""
|
||||
|
@ -29,7 +46,7 @@ def CheckUrl(url):
|
|||
}
|
||||
try:
|
||||
status = requests.get(url,proxies=proxies, timeout=5).status_code
|
||||
if status != 502:
|
||||
if status == 200:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
@ -38,6 +55,31 @@ def CheckUrl(url):
|
|||
except requests.exceptions.ReadTimeout as e:
|
||||
return False
|
||||
|
||||
###TODO: should replace checkUrl
|
||||
# checks if all the webring participants are reachable
|
||||
def is_participant_reachable(instance):
|
||||
"""
|
||||
Checks if all URL files are actually reachable via Tor
|
||||
|
||||
Parameters:
|
||||
instance (str): The participant onion address
|
||||
|
||||
Returns:
|
||||
Boolean: False if any file is unreachable, True if all are reachable
|
||||
"""
|
||||
|
||||
url = generate_participant_url(instance)
|
||||
|
||||
# Checks all files on a webring participant , if all reached returns true
|
||||
for file_name in conf.CSV_FILES:
|
||||
try:
|
||||
status = requests.get(f'{url}{file_name}',proxies=conf.PROXIES, timeout=10).status_code
|
||||
if status != 200:
|
||||
return False
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
#### PROTECTIONS AGAINST MALICIOUS CSV INPUTS ####
|
||||
def IsBannerValid(path: str) -> bool:
|
||||
|
@ -59,7 +101,6 @@ def IsBannerValid(path: str) -> bool:
|
|||
return False
|
||||
return True
|
||||
|
||||
|
||||
def IsOnionValid(url: str)-> bool:
|
||||
"""
|
||||
Checks if the domain(param) is a valid onion domain and return True else False.
|
||||
|
@ -159,25 +200,6 @@ def IsUrlValid(url:str)->bool:
|
|||
return False
|
||||
return True
|
||||
|
||||
|
||||
#def IsUrlValid(url:str)->bool:
|
||||
# """
|
||||
# Check if url is valid both dark net end clearnet.
|
||||
# """
|
||||
# pattern = re.compile("^[A-Za-z0-9:/.-]+$")
|
||||
# url = str(url)
|
||||
# if len(url) < 4:
|
||||
# return False
|
||||
# if url.endswith('.onion'):
|
||||
# return IsOnionValid(url)
|
||||
# else:
|
||||
# if not url.__contains__('.'):
|
||||
# return False
|
||||
# if pattern.fullmatch(url) is None:
|
||||
# return False
|
||||
# return True
|
||||
|
||||
|
||||
def IsStatusValid(status: str)-> bool:
|
||||
"""
|
||||
Checks if status contains only ['YES','NO']. Verbose only if False is returned
|
||||
|
@ -191,7 +213,6 @@ def IsStatusValid(status: str)-> bool:
|
|||
|
||||
return True
|
||||
|
||||
|
||||
def IsScoreValid(score:str)->bool:
|
||||
"""
|
||||
Check the Score is only "^[0-9.,]+$" with 8 max chars.
|
||||
|
@ -207,7 +228,6 @@ def IsScoreValid(score:str)->bool:
|
|||
return False
|
||||
return True
|
||||
|
||||
|
||||
def IsDescriptionValid(desc:str)->bool:
|
||||
"""
|
||||
Check the categories are only [a-zA-Z0-9.' ] with 256 max chars.
|
||||
|
@ -239,8 +259,6 @@ def IsCategoryValid(categories: list)-> bool:
|
|||
else:
|
||||
return True
|
||||
|
||||
|
||||
|
||||
def IsSimpleXServerValid(url: str) -> bool:
|
||||
pattern = re.compile('[0-9A-Za-z-_]*')
|
||||
url = url.strip()
|
||||
|
@ -274,8 +292,6 @@ def IsSimpleXServerValid(url: str) -> bool:
|
|||
# Any error will be a false
|
||||
return False
|
||||
|
||||
|
||||
|
||||
def IsNameValid(name: str)->bool:
|
||||
"""
|
||||
Check the parameter name only contains [a-zA-Z0-9 ] and is 64 chars long.
|
||||
|
@ -292,7 +308,6 @@ def IsNameValid(name: str)->bool:
|
|||
return False
|
||||
return True
|
||||
|
||||
|
||||
def print_colors(s:str=' ', bold:bool=False, is_error:bool = False, default:bool=False):
|
||||
"""
|
||||
Helper function to print with colors
|
||||
|
@ -308,8 +323,6 @@ def print_colors(s:str=' ', bold:bool=False, is_error:bool = False, default:bool
|
|||
else:
|
||||
print(f"{PURPLE}{s}{RESET}")
|
||||
|
||||
|
||||
|
||||
def IsSimpleXOnionValid(url: str)-> bool:
|
||||
"""
|
||||
Checks if the domain(param) is a valid onion domain and return True else False.
|
||||
|
@ -383,3 +396,215 @@ def send_server_checks(url:str) -> ():
|
|||
failed_response = response['resp'].get('testFailure')
|
||||
|
||||
return (response, resp_type, failed_response)
|
||||
|
||||
def is_row_valid(row):
|
||||
"""
|
||||
validates dataframe row to check if all field are valid
|
||||
|
||||
Parameters:
|
||||
row (dict): dataframe row
|
||||
|
||||
Returns:
|
||||
Boolean: True if row is valid, False if row isn't valid
|
||||
"""
|
||||
try:
|
||||
return (
|
||||
IsUrlValid(row['Instance']) and
|
||||
IsCategoryValid(row['Category']) and
|
||||
IsNameValid(row['Name']) and
|
||||
IsUrlValid(row['URL']) and
|
||||
IsStatusValid(row['Sensitive']) and
|
||||
IsDescriptionValid(row['Description']) and
|
||||
IsStatusValid(row['Status']) and
|
||||
IsScoreValid(row['Score'])
|
||||
)
|
||||
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
###################### General ######################
|
||||
|
||||
def merge_verification_df(receiving_df, merging_df):
|
||||
"""
|
||||
merges 2 dataframes of type verified or unverified (do not merge duplications by name or url)
|
||||
|
||||
Parameters:
|
||||
receiving_df (Dataframe): dataframe we want to receive the data
|
||||
merging_df (Dataframe): dataframe we want to merge into the receiving dataframe
|
||||
|
||||
Returns:
|
||||
Dataframe: the combined dataframe will be returned
|
||||
"""
|
||||
try:
|
||||
filtered_df = merging_df[~((merging_df['URL'].isin(receiving_df['URL'])) | merging_df['Name'].isin(receiving_df['Name']))]
|
||||
|
||||
if filtered_df.empty:
|
||||
return receiving_df
|
||||
|
||||
elif receiving_df.empty:
|
||||
return filtered_df
|
||||
|
||||
else:
|
||||
return pd.concat([receiving_df, filtered_df], ignore_index=True)
|
||||
|
||||
except Exception:
|
||||
return receiving_df
|
||||
|
||||
def remove_duplications(df):
|
||||
"""
|
||||
remove url and name duplications from the dataframe
|
||||
|
||||
Parameters:
|
||||
df (Dataframe): the dataframe to remove duplications from
|
||||
|
||||
Returns:
|
||||
Dataframe: the dataframe after all duplications were removed
|
||||
"""
|
||||
try:
|
||||
df = df.drop_duplicates(subset='Name')
|
||||
df = df.drop_duplicates(subset='URL')
|
||||
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return df
|
||||
|
||||
###TODO: can later remove the inputs and have a "global" local verified and unverified or a class of the local(lantern host) participant
|
||||
def save_local_verified_and_unverified(verified_df, unverified_df):
|
||||
"""
|
||||
saves the local verified and unverified
|
||||
|
||||
Parameters:
|
||||
verified_df (Dataframe): local verified rows dataframe
|
||||
unverified_df (Dataframe): local unverified rows dataframe
|
||||
|
||||
Returns:
|
||||
Dataframe: the combined dataframe will be returned
|
||||
"""
|
||||
try:
|
||||
current_instance = get_current_instance() + '/'
|
||||
|
||||
verified_df.to_csv(f'{conf.PARTICIPANT_DIR}{current_instance}verified.csv', index=False)
|
||||
|
||||
unverified_df.to_csv(f'{conf.PARTICIPANT_DIR}{current_instance}unverified.csv', index=False)
|
||||
|
||||
return True
|
||||
|
||||
except Exception:
|
||||
print_colors('[-] Saving verified and unverified failed',is_error=True )
|
||||
return False
|
||||
|
||||
###################### Getters/Generators ######################
|
||||
def generate_participant_url(participant):
|
||||
"""
|
||||
generates url of the webring participant
|
||||
|
||||
Parameters:
|
||||
participant(str): participant's onion address/instance
|
||||
|
||||
Returns:
|
||||
str: the url of the webring participant
|
||||
"""
|
||||
|
||||
return f'http://{participant}/participants/{participant}/'
|
||||
|
||||
def generate_local_participant_dir(participant):
|
||||
"""
|
||||
generates local files path of the webring participant
|
||||
|
||||
Parameters:
|
||||
participant(str): participant's onion address/instance
|
||||
|
||||
Returns:
|
||||
str: the local path of the webring participant's files
|
||||
"""
|
||||
|
||||
return f'{conf.PARTICIPANT_DIR}{participant}/'
|
||||
|
||||
def get_official_participants():
|
||||
"""
|
||||
reads all the official webring participants
|
||||
|
||||
Returns:
|
||||
list: list of all the official webring participants
|
||||
"""
|
||||
|
||||
try:
|
||||
current_instance = get_current_instance()
|
||||
|
||||
with open(conf.OFFICIAL_PARTICIPANTS_FILE, 'r') as file:
|
||||
return [line.strip() for line in file if current_instance not in line]
|
||||
|
||||
except Exception:
|
||||
print_colors('[-] Couldn\'t read official webring participants file',is_error=True )
|
||||
|
||||
def get_local_blacklist_and_sensitive():
|
||||
"""
|
||||
reads the local blacklisted words and the local sensitive words
|
||||
|
||||
Returns:
|
||||
blacklist(list): list of all the words that are blacklisted
|
||||
sensitive_list(list): list of all the words that are sensitive
|
||||
"""
|
||||
try:
|
||||
current_instance = get_current_instance() + '/'
|
||||
|
||||
blacklist_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}blacklist.csv')
|
||||
blacklist = blacklist_df.iloc[:, 0].tolist()
|
||||
|
||||
sensitive_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}sensitive.csv')
|
||||
sensitive_list = sensitive_df.iloc[:, 0].tolist()
|
||||
|
||||
return blacklist, sensitive_list
|
||||
|
||||
except Exception:
|
||||
print_colors('[-] Failed reading the blacklist and sensitive words file',is_error=True )
|
||||
return [], []
|
||||
|
||||
def get_local_verified_and_unverified():
|
||||
"""
|
||||
reads the local verified csv and the local unverified csv
|
||||
|
||||
Returns:
|
||||
verified_df(Dataframe): verified.csv as dataframe
|
||||
unverified_df(Dataframe): unverified.csv as dataframe
|
||||
"""
|
||||
|
||||
try:
|
||||
current_instance = get_current_instance() + '/'
|
||||
|
||||
verified_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}verified.csv')
|
||||
|
||||
unverified_df = pd.read_csv(f'{conf.PARTICIPANT_DIR}{current_instance}unverified.csv')
|
||||
|
||||
return verified_df, unverified_df
|
||||
|
||||
except Exception:
|
||||
print_colors('[-] Failed reading the verified and unverified files',is_error=True )
|
||||
return pd.DataFrame(), pd.DataFrame()
|
||||
|
||||
def get_local_webring_participants():
|
||||
"""
|
||||
make sure the official participants are registered in the webring csv file
|
||||
|
||||
Returns:
|
||||
Dataframe: the verified local webring participants dataframe
|
||||
"""
|
||||
|
||||
try:
|
||||
webring_df = pd.read_csv(conf.LOCAL_DIR + conf.WEBRING_CSV_FILE)
|
||||
|
||||
# finds any missing official webrings in the local webring file
|
||||
missing_participants = set(get_official_participants()) - set(webring_df['URL'])
|
||||
|
||||
for participant in missing_participants:
|
||||
new_row = [{'Name': '','URL': participant,'Description': '','Trusted': 'NO','Status': '','Score': ''}]
|
||||
webring_df = pd.concat([webring_df, pd.DataFrame(new_row)], ignore_index=True)
|
||||
|
||||
webring_df.to_csv(conf.LOCAL_DIR + conf.WEBRING_CSV_FILE, index=False)
|
||||
|
||||
return webring_df
|
||||
|
||||
except Exception:
|
||||
print_colors(f'[-] failed reading webring participants file',is_error=True )
|
||||
return pd.DataFrame()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue